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Preface

The Center of Experimental Design and the Institute of Applied Statistics and Computing of the
University of Natural Resources and Life Sciences, Vienna, Austria organized an international
conference on experimental design from 25𝑡ℎ to 30𝑡ℎ of September 2011 with the title “Optimal
Design of Experiments – Theory and Application, International Conference in Honor of the late
Jagdish Srivastava”. It was a satellite conference of the 58𝑡ℎ ISI World Statistics Congress 2011
in Dublin.

This conference was devoted to theoretical developments as well as practical applications of
experimental design. The conference was open to researchers and practitioners. The organizers
accepted papers devoted to both the development of mathematical theory and related algorithms
as well as practical applications.

93 participants from 21 countries took part at this conference, the list of the participants
is given at the end of the proceedings (page 216 ff.). 26 invited presentations, 31 contributed
presentations and 9 poster presentations were given by the participants. We tried to publish
as many contributions as possible passing the review process in this proceedings volume. Some
papers could not be published due to the fact that they already had been delivered to other
journals.

We want to thank all LATEX developers and Martin Monperrus for providing the master file for
the proceedings. Thanks to Thomas Emmel for the ticket package, Nicola Talbot for the datatool
package and Andreas Matthias for the pdfpages package. Special thanks to Uwe Ziegenhagen
for his tutorial about conference management with LATEX.

Vienna, October 2011

The Editors.
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Abstract: The beginning of experimental design in Russia was in 1960, when the Journal 

„Progress in Chemistry‟ was published the review by Prof. V. Nalimov “Statistical 

Methods of Search the Optimal Conditions for Chemical Processes”. It was some analysis 

of foreign sources. 

The period from 1960 to 2010 we are dividing into three parts: 

1) From 1960 to 1980, 

2) From 1981 to 1991, 

3) From 1992 to 2010. 

On each part we are discuss methodological and applied aspects the investigations in area 

of experimental design: publications (books, review, and some articles), organizational 

activities (scientific councils, conferences, seminars, and so on), education, and 

scientometrical investigations. 

The first part was connected with development of some scientific groups in chemical and 

metallurgical organizations. They were publication of some tens applied articles. In this 

time experimental design was a part of chemical cybernetics. But just in the end of 1960s 

was created “invisible collective (college)” under the leadership of Prof. V. Nalimov and 

was beginning some development of theoretical and methodological problems of building 

designs on the base of some criterion of optimality. There were big growth of applied 

publications in chemistry, metallurgy and technics. It was start of big conferences and 

numerous seminars. It was the beginning of educational activities in this area. 

On the second part by Nalimov‟s school was developed logical fundamental of 

experimental design. Design of experiment was included in applied statistics as an 

independent part. In this time was published some catalogs for plans of experiments. In 

the beginning of 1980 was published some thousands of articles and more than 100 books 

with different applied problems. 

On the third part scale for methodological and applied works in this area was significant 

smaller in connection with systematical crisis of Russian science. 

In this publication we are presented first part only. We hope continue on the next 

conference. 

 

Keywords: History, DOE (Design of Experiments), Russian impact. 
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1 Introduction  

The beginning of investigations in the area of experimental design in Russia started in 1960, when the 

journal «Progress in Chemistry» («Успехи химии») published the review by prof. V.V, Nalimov 

(1960) which descripted some foreign publications. As was pointed out in this article in 1951 Box and 

Wilson (1951) are introduced a new method for search the optimal conditions of chemical reactions on 

the base of modern mathematical statistics by experimental design and data analysis. In contrast with 

common methods of experimentation in this case the number of runs and those conditions were 

determined by special mathematical rules. Moreover all factors changed together, not one-in-time. It 

leads to a huge decrease of the number of runs. Experimentation gets additional information about 

effects of interaction which does not arise in «classical» experiment. On the last step there was 

building of a mathematical model. The model determines the optimal condition of the process by 

changing levels of factors, for example in case of change some raw materials. 

For an illustration of this idea in that review a short version of one chapter from the book by Davies 

O.L. (1956) was translated. In another part of the review the method of search the region of optimum 

(near “stationary area”) and experimentation in this area (the response surface methodology) was 

described for the case of lots of factors. In all parts there were numerical examples. Fifteen applied 

publications on design of experiments in the area of chemical investigations were cited. Unfortunately 

the method was not very popular in that time. The trouble is first of all due to the traditional system of 

education in which there is no information about key ideas of mathematical statistics for chemists, 

physicists, metallurgists, and so on. 

After review V.V. Nalimov (1960) prepared a cycle of lectures about the design of experiments and 

organized scientific seminar in this area in the State Scientific Research Institute of rare metals and 

semiconductors (GIREDMET) where he was working in that time. 

Up to 1964 there were published 20 applied articles: Adler, Yu., Granovsky, Yu., (1965) and only two 

years later the number of publications has grown by ten times: Adler, Yu., Granovsky, Yu. (1967), 

after 1965 some theoretical and methodological investigations have begun in our country. 

2 First part (1960-1980) 

2.1 Methodological investigations  

Mathematical statistics implemented some methodological conceptions into the body of design of 

experiment. Stable frequencies, nature of statistical inference, randomization, sequential 

experimentation, and reduction of information, presentation of results by a set of models – are 

examples of such implementations. Implementation of experimental design leads to a huge decrease of 

the number of runs, but first of all gives much more clear conclusions of experimentations, improving 

his or her heuristically thinking. Mathematical theory of experiments makes clear which of ideal 

statistical assumptions are applicable in the real practices of experimentation V.V. Nalimov (1971). 

It is important to compare active and passive experimentations. In the first case investigator has a 

possibility to change conditions of experiments. In the second case investigator plays a role of 

observer of the experiment which nature makes. In both cases it is possible to describe results by the 

same regression model. But in the active case observable factors always have no practical correlation 
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with unobservable factors and so the estimates of regression coefficients are nonbiased in contrast with 

the passive situation where there is strong bias between factors.  

Mathematical theory of experiments expressed in the language of mathematical statistics is a 

methatheory with such common for all experimentations principles as decision making in the situation 

of uncertainty, in the design of experiments and approach to data interpretation.  

«The language very suit because it lead to descriptions the response of nature on experimenters 

activities in frame of indeterministic system of concepts, which representation the real world with 

degrees of freedom for its probabilistic behavior» V.V. Nalimov (1971, p.198). 

Design of experiments seems to be a part of mathematics; its inferences have a mathematical form.   

But in this case as well as in other parts of applied mathematics there are no structures with rigid 

logical content. Sometimes the structures can change the mosaic of criteria; sometimes on a 

mathematical language we write sentences with intuitive nature. Here there are no any syllogisms 

which are typical for traditional mathematical constructions.   

In the experimental design the role of axioms play some criteria of optimality which are based on our 

intuitive understanding of a good experiment. Criteria are divided into two groups: static and dynamic. 

Statistic criteria determine some configurations of points in the factor space.  Here the statements 

about the characteristics of a plan (theorems) are checking by proofing. Criteria of optimality create 

the mosaic of incompatible statements as a rule. 

In this circumstance it is very important to compare designs which were built on the base of different 

criteria. It is possible to estimate by computational methods how a plan which is optimal for one 

criterion is optimal for another one. Sometimes it can have a sense to build a compromise decision on 

the base of the comparison. For it we need to have quantitative estimations of parameters of a design. 

Such work was done in the interfaculty laboratory of statistical methods of Moscow State University. 

The comparisons of most popular for practices plans by several criteria were realized in the laboratory. 

Just always there are some plans with not big quantity of points with the characteristics near to 

optimal. On this base the first catalog of optimal designs was developed. 

On computer the quasi-D-optimal designs with small quantity of points were built. Effectiveness of 

experiments is going up in connection with the best configurations of points in factorial space. It was 

clear that D-optimality is very universal criterion. For example saturated linear plans are D-optimal, 

such as Latin squares, Latin cubes, Greco-Latin squares and fall and fractional factorial plans V.V. 

Nalimov (1971), Nalimov, V.V., Golikova (1976). 

Second group of criteria is dynamics criteria. They are being used for search of optimal strategy in 

sequential experimentation. For example by study of biological activity of big quantity of samples 

with strong restrictions on runs it is very actual. But in this case there is no possibility to build some 

mathematical theory. We have possibility to build some practical algorithm suitable for realization 

only. 

In some cases for example in screening experiments we have a mixture of problems, when we need 

not only to estimate parameters of a model, but to minimize dimensions of factorial space. 
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So, the theory of experiments is not a result of some logical operation. It is impossible to have fully 

formal process of experimental investigation. Problem statement, choice of mathematical model, 

choice of factors and area of experimentation are nonformal stages of any investigation. Strong theory 

is suit for the experimental procedures which have mathematical models. The key problem is logical 

interpretation of goal and results. If this is clear then it is useful to discuss the problem of optimality. 

Design of experiments is an interdisciplinary science. 

Success in the study of first group criteria leads to a change of logic in the theory of experiments. It is 

growing on strong formal criteria but in the same time another nonformal criteria play complementary 

roles. From an investigator point of view the last criteria may be very interesting: Nalimov, V.V., 

Golikova, T.I. (1976), Nalimov, V.V., Golikova, T.I. (1977). 

Other results worth mentioning are: generalization of the theorem about equivalence of D- and G- 

optimality in case of linear functionals from matrix of covariation (L-optimality), and in case of 

convex functionals (Ф-optimality). A computational algorithm for building continual Ф-optimal 

designs was developed by V.V. Fedorov for any linear by parameter model in any compact area. 

Strong mathematical statement of problem of choice for the optimal activities for a model with non-

adequate results of experiments was developed by S.M. Ermakov. There was a progress in the problem 

of building plans without bias with minimum points of spectrum and with minimum of random error 

on set plans without bias (E.V. Sedunov). 

In “classical” theory of factorial design which is often used for independent variables with discrete 

levels new results were obtained. Strong determinations of “factorial” designs and “factorial” models 

were implemented. Different types of models with discrete and continuous levels of factors were 

analyzed.  New classification of factorial designs was introduced and the methods for building 

effective plans of factorial models were developed (V.Z. Brodsky). 

In the design of screening experiment the relationship between numbers of runs, numbers of 

significant effects, and numbers of “potential” effects with probability to build a plan was found by F. 

Satterthwaite and all such effects were determined by L.D. Meshalkin. 

Different results of the theory of screening design were interpreted from common position. It was 

found: lower estimates for the number of runs in various statements of the screening problem, 

existence of plans with given points, suitable for analysis regular plans with not big number of points, 

simplest procedures for analysis of experiments with modest numbers of operations (M.B. Malutov): 

Nalimov, V.V., Golikova, T.I.  (1981). 

Specific problems are connected with troubles of building models which are nonlinear by parameters. 

Chemical kinetic is a typical example. Key problem is estimating the mechanisms of intermediate 

stages which are unobservable directly from experiments. It is possible by prior information to build 

system of differential equations for representation the mechanism of intermediate reactions and 

description of parameters of a model. This system we can interpret as a set of axioms for divided 

results of observations on components. Three kinds of troubles and uncertainties may be connected 

with it: 1) random error of observations, 2) ambiguity estimates of parameters of a model for very 

complicated processes, 3) different formalization of chemical reactions in different schools of 

chemists. 
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In such circumstances it is not possible to search one model only. More suitable is an interpretation of 

terms for a set of models and their geometrical representation   (V.G. Gorsky): Nalimov, V.V., 

Golikova, T.I. (1981).  

2.2 Applied investigations 

If in the first review of applied papers about design of experiments (1965) there were only 15% of 

Russian papers, then in the next review just after two Years we have more than ten times more 

Russian papers, near to 25%:  Adler, Yu., Granovsky, Yu. (1967), in the latter review there were not 

given such areas as psychological and aerobiological experiments and screening designs in biology 

and pharmacology. 

About 250 our papers were distributed by next topics: 

- Design and theoretical models of processes, kinetic and catalysis (21.2%), 

- Organic chemistry and technology (18.4%), 

- Nonorganic chemistry and technology (16.0%), 

- Automatic, electronic, electrotechnic (15.6%), 

- Mining and ore concentration (10.4%),             

- Analytical chemistry (6.4%). 

The rest (12%) of papers were devoted to biology, pharmacology, medicine, metallurgy, physics of 

metals, technology of metals, metrology, design on diagram “composition - property”, and so on. 

Chemistry was the leader in applied studies (62%). We can see tendency to more complicated objects 

and methods.  

In an review about design of experiment in chemistry (the end of 1970th)  it was pointed that in 

problems of optimization and interpolation more frequently used methods are: steepest accent and 

fractional factorial experiment (30%), plans of second order (20%), full factorial experiment (15%), 

design on diagram “concentration - property” (10%). By questioning the participants of the 5th All 

union conference on design and automation of experiments (1976) there was found a next distribution 

of a number of factors in papers on design: 1-5 – 49%, 6-10 -39%, before 50 – 11%, near to 100 – 1%: 

Markova, E.V., Adler, Yu., Granovsky, Yu (1980). 

In review by Adler, Yu., Granovsky, Yu. (1977) were presented Russian investigations in 

methodology and practice of experimental design for ten Years in form of books only (about 90 

monographs, textbooks, and translations). The following areas were observed: 

- Chemistry and chemical technology – the broadest area of applied works (37.6%), 

- Metallurgy and physics of metals (14%), 

- Mining and ore concentration (8.6%), 

- Materials for construction (7.5%), 

- Radio-electronic and automatic (5.4%). 
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This time DOE was working with success for research in areas of machining, electric motors and 

modeling of energosystems. Some works about cars testing, automatization of ship‟s control, cosmos 

study, systems of “man - machine”, and from area of reliability were presented. 

2.3 Education and training 

V.V. Nalimov prepared a program “Statistical investigation methods in chemistry” which was 

approved by Ministry of higher and special education in 1961. That program was lectured in the State 

Institute of rare metals and semiconductors (GIREDMET), in the Moscow Institute of Chemical 

Technology named by D.I. Mendeleev, on Chemical Faculty of Moscow State University. Broader 

version of the program included 64 hours of lectures and 40 hours of exercises. Examples were from 

chemistry, metallurgy, and physic-technical investigations.  The book by V.V. Nalimov “Application 

of mathematical statistics by chemical analysis” (1960) was recommended for chemists as help in 

study of statistics. As an experience with chemists and metallurgists demonstrated there are not any 

troubles with the study of statistics on the examples from analytical chemistry. For study of 

multifactorial designs students used the review from “Progress in chemistry” (1960) and the brochure 

by V.V. Nalimov “Statistical methods of description chemical and metallurgical processes” (1963). 

Since 1962 mathematical theory of experiments was lectured in the Moscow Institute of Postgraduate 

Education in Chemistry and in Chemical Industry. During 2-4 Months people were studying special 

topics being away from work. The program had about 300 hours of mathematical –statistical 

disciplines. For 8 Years there were educated about 300 people.  As a result in many cities of the 

country specialists who understand the ideas and methods of modern statistics have appeared. In 1979 

the department “Statistical methods in management and control” chaired by Yu P. Adler was created. 

3 kinds of students with different time of education: 3 Months, 2 Months, and one Month (for 

managers) went through this department: Markova, E.V. (2003). 

At the All union scientific conference on design and automation of experiments (1970) which deals 

with education and training V.V. Nalimov presented the work “Problems of education of theory of 

experiment”: Nalimov, V.V. (1970).  He pointed out that a new discipline – mathematical theory of 

experiment – was created on the base of ideas of mathematical statistics. It implements some new 

ideas in experimentations thinking. The people which make experiments need to know that new 

conceptions for discussions with consultants. The basic ideas of the theory are possible to include into 

common course of higher mathematics.   

The next step – it is the education of experts in the area of mathematical theory of experiment.  Broad 

training of people is not enough for working without any assistance; experts are in need of anyway: 

Nalimov, V.V. (1970), Nalimov, V.V. (1999). 

Professional statisticians-consultants have not being prepared by any institutions of higher education. 

Little quantity of our consultants is the result of self-education. We observed some attempts to prepare 

no mathematicians but persons with supplementary knowledge on statistics.   

Small courses of design of experiment (with limited volume of information) were teaching in about 23 

educational institutions in 17 cities since the beginning of 1970th (3 universities, 6 polytechnic higher 

schools, 4 chemicals, 2 metallurgical, 1 medical and 7l other universities). All the programs were 

teaching without any connections with other special or mathematical disciplines. 
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For example in Moscow Institute of Steel and Alloys an associated professor Novik F.S. was teaching 

a course of DOE firstly to students and then to postgraduate students of the faculty of upgrading 

qualification. In Moscow Power Institute the courses for qualification upgrade were created for 

engineers; the program was focused on 200 hours for three months. There was an education-consulting 

center under the automation laboratory of MPI (Moscow Rower Institute): Granovsky, Yu., Dragalina, 

I.A., Markova, E.V. (2005). 

At that time V.V. Nalimov supposed to organize cross-faculty departments of DOE in 1-2 institutes. 

They could play the same role as statistical faculties in foreign institutes – professional preparation of 

statistical consultants. The problem of personnel for teaching statistics for experimenters could be 

solved in such way. Besides it was necessary to create programs and textbooks which could link 

naturally the teaching of DOE with general course of higher math: Nalimov, V.V. (1971). 

But to the end of 1970 V.V. Nalimov noted that many professionals of DOE are disappointed. 

Everything was OK when one investigated plans for extreme designs. Box-Wilson model turned out to 

be typical for many situations especially in technique. Later several more typical models appeared for 

example for the screening problems.      

The efforts should be aimed not to a choice and model construction but to all following technical 

activity. But many experimenters have learned to do these themselves without external assistance. 

Professionals in DOE should turn out to be modelers.    

To teach modelers means to teach how the vague given knowledge may be presented in compact 

symbolic form and how to state the questioned part of the model in such way that it was in reasonable 

agreement with the assumptions. The art of simulation depends on a sense of measure which helps to 

balance our knowledge and what one wants to know: Nalimov, V.V., Golikova, T.I. (1981). 

2.4 Organizational issues 

At the end of 1961 during a common meeting of The Board of All-union chemical society by D. 

Mendeleev and The Council on cybernetics of The Academy of Science of the USSR a decision was 

made to create a section "Chemical cybernetics" under The Council. V.V. Nalimov became the chair 

of this section and E.V. Markova became its secretary. The section united the scientists and engineers 

working in scientific and industrial centers, universities and industry. One of the main areas of the 

section was design of chemical experiments. 

At the first half of 1960 in the GIREDMET, MSU and MPI the scientific groups being involved into 

solving the problems of the design of extreme planning appeared. A workshop at the GIREDMET 

leaded by V. Nalimov united all investigators working in this direction. In 1962 the workshop was 

moved to the Council of cybernetics and became all-union: Markova, E.V., Adler, Yu. P., 

Preobrazhenskaya, G.B. (1976). 

In 1961 a journal "Industrial laboratory" (“Заводская лаборатория”) started a section "Mathematical 

methods of researches" where articles on methodological and applied issues of DOE began to be 

published. As a result of this period the all-union meeting on DOE was held in Moscow in 1964. There 

were presented about 70 reports there. More than 500 persons participated.  

Working in GIREDMET V.V. Nalimov proved his doctoral thesis in 1963, and in 1965 he was invited 

by academician A.N. Kolmogorov to work in a new cross-faculty laboratory of statistical methods 
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under Moscow University. Here he became a head of design of experiments department and the first 

deputy of the head of laboratory academician A.N. Kolmogorov. 10 years later the laboratory was 

closed down and Nalimov's department was moved to the biological faculty of MSU where it was 

named a laboratory of mathematical theory of experiment. 

Among other organizations where researches were being made it is worth mentioning the Moscow 

chemic-technological institute by D.I. Mendeleev where in 1965 a faculty of cybernetics of chemic-

technological processes was created under the leadership of corresponding member of the Academy of 

Science of the USSR V.V. Kafarov. There was created the teaching and methodological center there 

destined to upgrade qualification of chemical institutes‟ teachers, researchers and engineers working in 

the Ministry of chemical industry of the USSR and in socialistic camp countries. In 1966 due to efforts 

of the section «Chemical cybernetics" of the Council of cybernetics three laboratories on chemical 

cybernetics and DOE were created in Moscow, Kiev and Lvov universities.   

The stuff of problem laboratory in MPI together with the Council of cybernetics initiated regular 

holdings of All-union conferences on design and automatization of experiments in scientific 

researches. There were held 10 conferences totally, the last one in 1992: Granovsky, Yu., Dragalina, 

I.A., Markova, E.V. (2005). It is worth noting that a committee of "Mathematical theory of 

experiment" became a section of the Council of cybernetics and Moscow workshop on DOE moved to 

a building "A" of Moscow University.  

In 1971 in the House of Scientists of the Academy of Science of the USSR a scientific conference was 

held devoted to 10 year anniversary of developing DOE in this country. There V.V. Nalimov summed 

up the bottom line and outlined that the methods of DOE began to be applied in different areas if 

researches not only in chemistry, and they give a significant economic impact. 

Let us pay attention to some workshops of 1970. Moscow workshop leaded by V. Nalimov became be 

named a workshop on DOE and data analysis. Its second leader became Dr. of physics and 

mathematics V.V. Fedorov. Since 1974 a workshop "Design of Experiments" has been working in 

Moscow house of scientific and technical propaganda leaded by Yu. Adler. The representatives from 

different cities of the country and from different socialistic countries participated. It was regular (6 

meetings a year) and on its base 3 all-union conferences were held and proceedings of them were 

published. In Leningrad University S.M. Ermakov headed a workshop "Mathematical methods of 

DOE". In Novosibirsk' electro-technical institute a workshop "Algorithms of analysis and DOE" was 

working by Dr. V.I. Denisov. 

In 1977 the structure of section "Mathematical theory of experiment" was radically changed. There 

were created 7 committees and 34 subcommittee. V.V. Nalimov stayed to be a head of the section, 

E.V. Markova and G.K. Krug became the deputes, E.P. Nikitina became a scientific secretary. The 

section united more than 500 professionals working in academic and industrial institutes, universities 

and industrial plants. In 1978 branch offices appeared in those towns where big groups of 

professionals in DOE worked and were linked with the section (Leningrad, Minsk, etc.). E.V. 

Markova was voted as the head of all branch offices. At the end of 1961 during a common meeting of 

The Board of All-union chemical society by D. Mendeleev and The Council on cybernetics of The 

Academy of Science of the USSR a decision was made to create a section "Chemical cybernetics" 

under The Council. V.V. Nalimov became the chair of this section and E.V. Markova became its 
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secretary. The section united the scientists and engineers working in scientific and industrial centers, 

universities and industry. One of the main areas of the section was design of chemical experiments. 

2.5 Scientometrical researches 

To analyze works of informal scientific groups there were constructed graphs of coauthors.  Each 

author was presented as a point in the plane and two points were connected by line if two authors were 

coauthors even in one publication. At the end of 1963 one such graph for domestic works was created 

by using a work by Adler, Yu., Granovsky, Yu. (1965). Two groups were formed in the USSR. 

Coauthors of soviet works turned out to be connected much greater than foreign researchers. It was 

interpreted as greater centralization of researches. As a rule the authors of methodological works 

worked in cooperation with the authors of applied ones. Another graph was constructed by using a 

section "Mathematical methods of researches" in the journal "Industrial laboratory" over 1962-1966. 

This graph is highly branched; some of its vertexes are well saturated so the researchers were highly 

linked with each other. The most part of researchers turned out to be the coauthors of informal 

(invisible) collectives by V.V. Nalimov, Adler, Yu., Granovsky, Yu. (1967); Adler, Yu., Granovsky, 

Yu., Mul‟chenko Z.M. (1969). 

The structure of domestic invisible collectives on DOE was studied during 1963-1969. The 

membership increased from 79 in 1966 to 210 in 1969. The publications which the participants of the 

invisible collectives referred to were revealed. The distribution of articles on topics let to follow the 

idea development of the group. Almost all references of 1963-1964 are related with planning of 

extreme experiments. This direction stayed leading in 1965-1966 but the references on the articles 

about adaptive optimization, rank correlation, DOE on diagrams concentrations-property appeared. In 

1967-1968 planning of extreme experiment stops being a leader in the area. New fields appeared: 

creation of general theory of DOE; synthesis of plans on the base of general theory; construction and 

development of plans of ANOVA; sequential planning of experiment for more precise estimates of 

constants and for discrimination of models. The contribution of invisible collectives into information 

flaws on DOE was about 70%. 

On the base of Science Citation Index an information service on DOE was organized and several 

author indexes relating to 1966-1975 were published. Apart from solving only information problems 

this let realize the Nalimov's idea about the establishment of a feedback between an author and 

creative reader. By using these publications any known professional on DOE could find out when and 

by whom his works were cited: Granovsky, Yu., Dragalina, I.A., Markova, E.V. (2005). 
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Abstract: Control charts were introduced by W. Shewhart in 1924, and had been 

promoting later by E. Deming since the middle of 70th. This tool caused many 

discussions in literature and tremendous flow of publications. Statisticians coined many 

different types of charts and this induced the problem of comparison of their 

performance. 

There are very many papers devoted to this problem, but all of them were constructed in 

the style of one-factor-in-time experiment. We think that it is time to use the power of 

DOE for this goal. That's why we built and realized the regular fraction factorial design of 

2
m
3

n 
with 36 runs. 

The plan included a simulation with 10 parallel realizations in each run. On the base of 

this experiment we have built a regression model and are now working on its 

interpretation. The model included some linear effects and pair interactions. The first 

results are presented at this conference. 

 

Keywords: Control Chart by Shewhart, Design of Simulation Experiments, Regular 

Fraction Factorial Design of 2
m
3

n
, Visualization of Data, Interpretation of Results. 

1 Introduction 

Shewhart’s control charts is a power tool for managerial decision making. It divides the state of a 

system into two different states: “in statistical control” and “out of statistical control”. These two states 

lead to principally different kinds of activities. In the first case one needs to change the system itself 

and that could be made only from the top level. Only top management has a possibility to improve the 

system. Moreover it is the direct responsibility of top management. In the second case the 

management must empower the process team for solution of current problems and the return of the 

system in control state. From time to time the system will go out of control because of the Second Law 

of Thermodynamics (“Entropy of the World strives to the maximum”). And a process team will come 

back to solution of current problems again and again. In such circumstances the clear determination of 

a moment when the system state changed plays the key role for managerial success. 

Reaction of a control chart on any change in the process state depends on the working conditions. The 

conditions can be described in terms of a set of factors. As a measure of the reaction one can take a so-

called power function. It is a natural response function measuring the probability of finding out the 

moment of process state change. So, we can build a simulation experiment in frame of design. 

                                                           
*
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Previous works used as a rule one-factor-in-time approach. We think that in such complicated case as 

a control chart is this is not enough for careful analysis of situation. The goal of this paper is an 

application of a regular fractional factorial design to the analysis of control chart performance. 

2
m
3

n 
plan was built and an interpolation regression model for power function depending on 9 factors 

was constructed and interpreted. 

2 Materials and Methods 

Here we discuss a behavior of a control chart of only one type, namely x-bar chart. Comparisons 

between different combination levels of factors give some information about the roles of each factor. It 

was necessary to build an experimental plan for modeling. The process included some stages.   

Stage 1. The choice of response. 

There were some variants for a choice of response but many traditional papers as a rule work with the 

power function. In connection with this we chose the same function for more clear comparisons with 

the previous results. One example of power function is shown in Figure 1. The red point is the 

response in one run of our experiment. It is the probability of one point falling outside 3 sigma limits 

of a chart. 

Figure 1: An example of power function (PF) with red point as response. 

Stage 2. The choice of factors.  

In any real situation there are many potential factors. But in our life there are a lot of restrictions. The 

main from them are time and money. And we need include in experiment a reasonable number of 

factors. We made a decision to work with 9 factors. Here there are: 

Power function for line № 31: 

f(x) = 0,5*f1 + 0,5*f2, where f1 and f2 - density for Lognormal(             ,          )
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X1 – weight of intervention of distribution, 

X2 – a type of original distribution, 

X3 – a number of elements in subgroup(n), 

X4 – a type of a contaminate distribution, 

X5 – a coefficient α in the equation x = r , which determines direction of a shift in “general 

mean”, 

X6 – a coefficient β in the equation 


 s , which determines if σ is going up or down, 

X7 – a coefficient s in the equation 


 s , which determines to what times σ changed, 

X8 – number of subgroups (k), 

X9 – coefficient r in the equation x = r , which determines how much the “general mean” 

changed 

Stage 3. The choice of factorlevels. 

All factors may be of two different kinds: with continual area of definition or with discrete one. In the 

first case we have a freedom for a choice of levels of factors which is restricted by metrological 

problems only. But the more number of factors we choose, the more runs we need to make. A number 

of levels depend on our expectations about an order of the polynomial model which suits for an 

approximation of the unknown real surface. Typically our expectations don’t go out of linear or 

quadratic polynomial model. For such kind of models two or three levels of factor are enough. 

In the second case we have multidimensional lattice and a choice of a number of levels depends not 

from a structure of a model, but from situation only. Nevertheless we made a decision to work with 

not more than three levels for factors of such kind. In Table 1 the results of our decisions are 

presented. 

Table 1: Factors and those levels 

Factor  X1 X2 X3 X4 X5 X6 X7 X8 X9 

High +  0.5 Lognormal 10 Lognormal 1 1 3 10 6 

Zero  0  Normal 5 Normal 0 0 2 6 0.5 

Low  - 0 Uniform 1 Uniform -1 -1 1 1 0 

 

Stage 4. The choice of design matrix. 

In search of a suit design matrix we took a Table (P. 1614) from the book by Taguchi, G., at al. (2005) 

and on the base of this matrix built an experiment with 36 runs and 9 factors. The plan is orthogonal 

for a linear model. The Table is given in Appendix A. It is presented in coding levels of factors. Table 

1 is a “dictionary” for translating “natural” levels of factors into coding ones.  
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Stage 5. Experimentation. 

The plan included a simulation with 10 parallel realizations in each run. Modeling was done in 

Statistics 7.0 in 20 runs: for each of them 1000 values were generated relative to each member of a 

composition distribution. This is sufficient to obtain a good estimate of the predetermined distribution 

parameters. Then the bootstrap simulation was applied to realize the remaining 9 replicates. So, we 

have 36 runs with 10 parallel realizations in each run. In the Appendix A (D) the vector of means 

responses (Y) is given together with design matrix. 

3 Theory/Calculation 

Assumptions:  

1. At the first moment our data have a normal distribution with M(X) = 0 and σ = 1, 

2. Random variables which we use for control chart are independent. 

3. At unknown moment of time the distribution of data changed but we don't know how. 

4. Response – power function – determinates a probability of a point to fall outside three sigma 

limits of the corresponding control chart. 

Equation. 

We calculated a saturated interpolation regression model with linear and paired interaction 

coefficients: 

Y = 0.3125+ 0.2040 X1+0.0925 X2+0.1629 X4+2.4071 X6+0.4527 X7+0.0472 X8+0.3880 

X9+1.0258 X1X5+1.1086 X1X6+1.0866 X1X9+1.4835 X1X4+1.8755 X1X3+0.3215 X1X8-0.5680 

X5X6+0.0801 X5X7+0.3206 X5X4-0.1109 X5X3-0.7061 X5X8-1.3896 X5X2+0.0462 X6X9+0.0951 

X6X7+0.2247 X6X4+0.4490 X6X3-1.0439 X6X2+0.4994 X9X4+0.0226 X9X3-0.3563 X9X2-0.0479 

X7X4+0.3424 X7X3-0.1633 X7X8-1.1652 X7X2+0.8333 X8X2-0.6846 X4X2-0.1370 X3X2 (1) 

The equation is near to saturate because only two linear coefficients are no significant: for X3 and X5.  

Unfortunately matrix X for that model is not orthogonal and it is impossible to have direct 

interpretation of the coefficients.  

Error of experiments from parallel realizations was 0.0075. 

The model is adequate on the level of significance 1%. 

4 Results 

It is not comfortable for us to work with such complicated form of representation of results. In such 

case one typically works with another approach of data visualization. We made 3D or sometimes 2D 

sections of response surface (1). Some examples of 3D sections are shown below. The cubes in the 

Figures determine the area of experimentation.  
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(1-А)*Norm+А*Lognormal (1-А)*Norm+А*Norm  (1-A)*Norm+A*Uniform 

Figure 2: Examples 3D sections of response surface for n = 5, 1 , 0x  

 

     0,5*Norm + 0,5*Lognormal     0,5*Norm + 0,5*Uniform 0,5*Norm + 0,5*Norm 

 

 Lognormal    Normal   Uniform 

Figure 3: Examples 3D sections of response surface for n = 1, σ ≥1, 0x . 

 

The equal response surfaces are presented in Figures 2 and 3. Red PF- surface correspond to 

probability 1, green PF – surface correspond to probability 0, and orange PF – surface correspond to 

probability 0.5. 
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5 Preliminary discussion 

Our model is a ten-dimensional hyperbolic paraboloid. Area of experimentation cuts some part of the 

surface. If the saddle point belongs to the area of experimentation then the mechanism of factor 

behavior changes. It leads to huge troubles in the interpretation of results. Nevertheless we have 

possibility to check some particular hypotheses about behavior of factors and the system as a whole in 

different situations. Sometimes our expectations not coincide with reality. 

It is a typical situation. Control charts were introduced by Walter Shewhart in 1924: Shewhart 

(1931/1980), Shewhart (1939/1986) and development by Edwards Deming during practical all last 

century: Deming (1994).During about 90 Years were published more than 4000 works in area of 

control charts. Here are some examples books: Cowden, D. J. (1957), Knowler, L.A., et al. (1969), 

Murdoch, J. (1979), Kume, H. (1985), Rinne, H., Mittag, H.-J. (1993), Wheeler, D. J. (1993), 

Wheeler, D. J. (1995), Wheeler, D. J. (2006), Ott, E. R., at al. (2000), Siegel, A.F. (2000), 

Montgomery, D. C. (2009), and many other. And here are some articles by Woodall, W. H. one and 

with coauthors (1999), (2000), (2004), (2006), and many others. All the works contain a lot of 

contradictions. It is not wonderful that we have some troubles with interpretations of results. 

Experimental design offers a new perspective for the analysis of control charts performance. First of 

all, multi-factorial approach leads to estimation of the interaction effects. If a one interaction is not 

zero than an approach of one-factor-in-time is not suitable for analysis of situation. In our case we 

have just the same situation. We think that we have got some base to say that many traditional 

investigations of control charts performance have limited value due to rather limited assumptions they 

are based on. 

6 Conclusions  

Experimental design is a natural frame for analysis of control charts performance. It gives much 

deeper picture of behavior of the complicate system. We have some new results about the effects of 

pair interactions. We are planning continue our investigations Adler, Yu., Maksimova, O., Shper, 

V.(2011). 

Appendix A 

Table A: Design matrix and means responses vector. 

X1 Х5 Х6 Х9 Х7 Х4 Х3 Х8 Х2 Y 

-1 -1 -1 -1 -1 -1 -1 -1 -1 0.0000 

-1 0 0 0 0 0 0 0 -1 0.0155 

-1 1 1 1 1 1 1 1 -1 1.0000 

-1 -1 -1 0 0 -1 -1 0 -1 0.0000 

-1 0 0 1 1 0 0 1 -1 0.0198 

-1 1 1 -1 -1 1 1 -1 -1 0.0000 

1 0 1 1 0 -1 -1 1 -1 0.8562 

1 1 -1 -1 1 0 0 -1 -1 0.0000 

1 -1 0 0 -1 1 1 0 -1 0.3092 
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1 1 0 1 1 -1 -1 0 -1 1.0000 

1 -1 1 -1 -1 0 0 1 -1 0.0320 

1 0 -1 0 0 1 1 -1 -1 0.0000 

-1 1 -1 1 0 0 -1 -1 0 1.0000 

-1 -1 0 -1 1 1 0 0 0 0.0161 

-1 0 1 0 -1 -1 1 1 0 0.0267 

-1 1 0 0 -1 0 -1 1 0 0.0626 

-1 -1 1 1 0 1 0 -1 0 1.0000 

-1 0 -1 -1 1 -1 1 0 0 0.0000 

1 -1 1 0 1 0 -1 -1 0 0.3529 

1 0 -1 1 -1 1 0 0 0 0.0404 

1 1 0 -1 0 -1 1 1 0 0.0045 

1 0 1 -1 -1 0 -1 0 0 0.0035 

1 1 -1 0 0 1 0 1 0 0.0000 

1 -1 0 1 1 -1 1 -1 0 1.0000 

-1 0 -1 -1 1 1 -1 1 1 0.0000 

-1 1 0 0 -1 -1 0 -1 1 0.0392 

-1 -1 1 1 0 0 1 0 1 1.0000 

-1 0 0 1 -1 1 -1 -1 1 0.0108 

-1 1 1 -1 0 -1 0 0 1 0.4402 

-1 -1 -1 0 1 0 1 1 1 0.0000 

1 1 1 0 1 1 -1 0 1 0.6519 

1 -1 -1 1 -1 -1 0 1 1 1.0000 

1 0 0 -1 0 0 1 -1 1 0.0043 

1 -1 0 -1 0 1 -1 1 1 0.0777 

1 0 1 0 1 -1 0 -1 1 0.2866 

1 1 -1 1 -1 0 1 0 1 1.0000 

Numbers of columns are result of randomization. 

In the last column are given means from ten realizations.  
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Abstract: The rating problem arises very often in statistical surveys, where respon-
dents are asked to evaluate several topics of interest (products, services, treatments,
etc.). In this framework, a new approach is represented by a class of mixture mod-
els (Covariates in the mixture of Uniform and shifted Binomial distributions, CUB
models), proposed by Piccolo (2003), D’Elia and Piccolo (2005) and Piccolo (2006).
Together with parametric inference, a permutation solution to test for covariates ef-
fects, when a univariate response is considered, has been discussed in Bonnini et al.
(2011), where the method has been proved to be well performing and competitive
with respect to the asymptotic solution. In the present work we perform an extension
of the simulation study to prove the good power behavior of the permutation solution
also in other different situations. The method is also applied to real data regarding
the analysis of the main reasons that drive tourists to choose Sesto/Alta Pusteria’s
Dolomites (an area of the Trentino Alto Adige region in Italy) as resort for their
holidays.

Keywords: Permutation test, CUB models, rating data, power study.

1 Introduction

Analysis of ordinal data is receiving a growing interest in many fields, like marketing (studying
preferences of consumers about a set of products) or clinical studies (rating treatments or drugs).

In this topic a new approach is represented by cubmodels, which have been introduced by
Piccolo (2003), D’Elia and Piccolo (2005) and Piccolo (2006) and then generalized by Piccolo
and D’Elia (2008) and Iannario and Piccolo (2009). It assumes that the judgment process follows
a psychological mechanism which is the result of a feeling towards the object under judgment
and an uncertainty generated by the presence of multiple alternatives.

As only asymptotic results are available for parametric inference, nonparametric alternatives
is helpful when, for instance, the sample size is not large. In Bonnini et al. (2011) the authors
proposed a permutation solution to test for covariates effects in cubmodels when conditions for
asymptotic inference do not hold.

In this work we extend the simulation study presented in Bonnini et al. (2011) to study the
performances of the permutation solution. The method is also applied to real data regarding the
analysis of the main reasons that drive tourists to choose Sesto/Alta Pusteria’s Dolomites (an
area of the Trentino Alto Adige region in Italy) as resort for their holidays.

2 Material and methods

Within the analysis of ordinal data a new solution is represented by cubmodels. In this frame-
work the judgment process is modeled as a mixture of two distributions, which are related to a

∗Corresponding author: solmi@stat.unipd.it
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feeling component towards the object under judgment and an uncertainty component generated
by the fact that the respondent has to choose among multiple alternatives.

When the sample size is not large non parametric alternatives can be useful in order to make
inference without relying on any assumption on the asymptotic distribution of the maximum
likelihood estimators. In this vein, a permutation solution is proposed in Bonnini et al. (2011) to
test for covariates effects in cubmodels when conditions for asymptotic inference do not hold.

3 Theory

cubmodels are generated by a class of discrete probability distributions obtained as a mixture
of a shifted Binomial and a Uniform random variable. Moreover subject (consumer or patient)
and object (product or drug) characteristics can be also introduced. Assume n people are rating
a definite item, hence we observe the sample y = (y1, y2, . . . , yn)

′; moreover let ~xi and ~wi, with
i = 1, . . . , n be subjects’ covariates for explaining feeling and uncertainty respectively. Hence,
the general formulation of a cub (p, q) model (with p covariates to explain uncertainty and q
covariates to explain feeling), is expressed as:

Pr (Yi = y|~xi, ~wi) = πi

(
m− 1

y − 1

)
(1− ξi)y−1ξm−yi + (1− πi)

(
1

m

)

with y = 1, 2, . . . ,m, and the two systematic components:

πi =
1

1 + e−~xi ~β
; ξi =

1

1 + e− ~wi ~γ

where ~xi and ~wi, with i = 1, . . . , n, are the covariates row-vectors for explaining πi and ξi,
respectively, and ψ = (~β′, ~γ′)′ the vector of parameters associated to the covariates.

Inference on cubmodels has been developed nonparametrically in Bonnini et al. (2011). In
that article the authors present a permutation solution (based on the constrained permutation
of raw data) to test for the effect of covariates on the rating response. The test works according
to the following steps (see Bonnini et al. (2011) for a more detailed description):

i. Calculate the observed value of a suitable test statistic t as function of the observed dataset
(several proposals for t are done).

ii. Permute the rows of only the columns related to the tested covariates, keeping fixed the
remaining elements of the dataset (perform constrained permutations within blocks, in
which the non tested covariates are constant).

iii. Calculate the value of the test statistic corresponding to the permuted dataset.

iv. Repeat Steps ii and iii B times, obtaining the permutation distribution of the test
statistic.

v. Calculate the p-value λ of the test as usual according to the permutation distribution of t.

This solution is a competitive alternative to the classical parametric test when the sample size
is not high.
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4 Results

In Bonnini et al. (2011) a Monte Carlo simulation study has been carried out to study the
performances of the permutation test. The power behavior of tests on the covariates of cub (1, 1),
cub (1, 0) and cub (0, 1) model was studied, comparing the permutation tests with a parametric
competitor. In the present work the study is extended considering more complicated cubmodels
under the alternative hypothesis, i.e. models with more than one covariate for π and ξ (up to
the cub (3, 3) model), to study how the number of covariates affects the inferential results and
the performance of the tests. As in Bonnini et al. (2011) we consider the case of dichotomous
covariates. We compare the permutation solutions and the parametric likelihood-ratio test. The
study showed how the power of all the procedures increases as we move further away from the
null hypothesis and as the sample size n increases. Moreover it has to be underlined that the
parametric solution does not control the type I error when the sample size is low. The results
are summarized in Figure 1: the results are showed in terms of estimated rejection probability
in relation to the distance of the simulated data from the null hypothesis of interest. Such
distance is represented as a combination of the number of influent simulated covariates and the
degree of their influence: in some sense it summarizes the differences among the values of the
feeling parameter in the different populations defined by the possible combinations of levels of
the covariates. The plots show the behavior of two permutation solutions tlrt and twald as we
move far away from the null hypothesis and as the sample size increases; the behavior of the
parametric solution (tpar) under the null hypothesis is also indicated.
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Figure 1: Estimation rejection probabilities for the permutation and parametric tests on the
influence of more than one covariate, for some of the settings considered in the study, with
simulated sample sizes of (a) n = 50 and (b) n = 100.

The permutation solution has also been applied to real data. The Sesto Nature Survey is a
study about the preferences of tourists for the facilities and offerings of the area of Dolomites
of Sesto/Alta Pusteria performed in summer 2010. The respondents were asked to indicate
the level of interest for different services using a rating scale from 0 to 10. In this work two
particular responses, related to the interest towards equipped routes and trips by mountain-bike
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(y1 and y2 respectively) have been considered. Moreover three covariates have been included in
the analysis, all dichotomous: nationality (Italian or not), presence of below 12 aged children
and presence of teenagers in the trip. For each response separately, a permutation test has been
performed in order to compare the full model with the three covariates with the null model
where no covariate is assumed to influence the response. In order to perform the test we used
B = 1000 permutations. For both responses the permutation test indicates an improvement due
to the inclusion of the three covariates with respect to the null model without covariates. Going
backward to check which covariates influence the responses and which of the two parameters of
the models are affected, we recovered the adjusted permutation p-values related to the partial
Wald tests associated to the single covariate/parameter combinations. The nonparametric results
are coherent with the parametric ones: the analysis suggested that the presence of teenagers in
the trip affects the feeling parameter for y1, and in particular groups with teenagers seem to be
more interested in equipped routes. Moreover the nationality covariate affects the uncertainty
parameter for y2, and, although all the respondents showed low interest towards the trips by
mountain-bike, in particular Italian visitors look to be more uncertain about this aspect.

5 Discussion

This paper aims to study the performances of a permutation solution to test for covariate effect
in cubmodels. We extended the simulation study presented in Bonnini et al. (2011), confirming
the good behavior of the method both under the null and alternative hypotheses also with low
sample sizes. We also applied the method to a real data application concerning a study about
the preferences of tourists for the facilities and offerings of the area of Dolomites of Sesto/Alta
Pusteria (Italy). The global influence of several covariates on some responses of interest has been
tested and a backward procedure, exploiting the permutation nature of the approach, has been
performed in order to check the influence of the single covariates on the outcomes, while taking
care of the multiplicity issue.

6 Conclusions

We can conclude that the permutation test based on the likelihood ratio test statistic seems to
be a very well performing alternative to the classical parametric counterpart when the sample
size in not large. Moreover the use of nonparametric combination of permutation tests can be
useful, on the other hand, if we aim to know which covariate brought to the rejection of the null
hypothesis, i.e. which specific coefficients are significantly different from 0 in case of rejection of
the null hypothesis, controlling the multiplicity issue. Indeed a backward analysis using a closed
testing procedure can be performed in those cases.

Acknowledgements

Authors wish to thank the University of Padova (CPDA092350/09) and the Italian Ministry for
University and Research MIUR project PRIN2008 -CUP number C91J10000000001 (2008WKHJPK/002)
for providing the financial support for this research.

Optimal Design of Experiments – Theory and Application, Vienna 2011

23



References

Bonnini, S., Piccolo, D., Salmaso, L., and Solmi, F. (2011). Permutation inference for a class of
mixture models. Communication in Statistics: Theory and Methods. Forthcoming.

D’Elia, A. and Piccolo, D. (2005). A mixture model for preference data analysis. Computational
Statistics & Data Analysis, 49(8), 917–934.

Iannario, M. and Piccolo, D. (2009). A program in R for CUB models inference, Version 2.0.

Piccolo, D. (2003). On the moments of a mixture of uniform and shifted binomial random
variables. Quaderni di Statistica, 5, 85–104.

Piccolo, D. (2006). Observed information matrix for mub models. Quaderni di Statistica, 8,
33–78.

Piccolo, D. and D’Elia, A. (2008). A new approach for modelling consumers’ preferences. Food
Quality and Preference, 19, 247–259.

Optimal Design of Experiments – Theory and Application, Vienna 2011

24



On exact D-optimal designes. Computational aspects.
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Abstract: Methods of D optimal experimental design construction based on Delta-
square distribution simulation are discussed. The algorithms proposed earlier by the
Author together with T. Misov had some disadvantages. In the paper some ways to
overcome these disadvantages are presented.
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1 Introduction

It is known that many optimal design problems are related to the search for a global extremum of
functions of many variables Φ(X), where X ∈ D ⊂ Rs lies in the design region D. If number s of
variables is high then the search problem can be very laborious. Classical problem of computational
construction of the exact d-optimal designs for regression experiments is a typical example of such
a problem.

Let us remind the most simple statement of the problem. Suppose the regression function f(x)
is defined in terms of a finite number of unknown parameters Θn.

f(x) =
n∑

k=1

Θkϕk(x), k = 1, . . . , n, (1)

where ϕk(x) – are known functions. As a result of an experiment one can measure (calculate) with
random error values of f in points Xl ∈ D, l = 1, . . . , N which are defined by the experimentators

ξ(Xl) = f(Xl) + εl, l = 1, . . . , N. (2)

In the simplest case that we are discussing random values εl satisfy conditions

Eξ(Xl) = f(Xl), E (ξ(Xl)(ξ(Xm)) =

{
0, l 6= m
σ2, l = m, l,m = 1, . . . , n.

(3)

It is also supposed that N > n. The well-known procedure of the method of least squares for
calculation of estimates Θ̂k of parameters Θk is reduced to solving system of linear algebraic equations

AΘ̂k = F. (4)

Exact D-optimal design is named Y ∗ = (X∗1 , . . . , X
∗
N ) satisfied to equality

Y ∗ = arg sup
X1,...,N

det

∥∥∥∥∥
N∑

m=1

ϕk(Xm)ϕl(Xm)

∥∥∥∥∥

n

k,l=1

.
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Solving D-optimisation problems is a difficult task, wich is mast often approached by studying
continuous designs and applying the equivalence theory of Kiefer and Wolfowitz (1959). D-optimal
criterion in this case is

Ψ(µ) = det

∥∥∥∥
∫
ϕk(X)ϕm(X) dµ(X)

∥∥∥∥
n

k,l=1

, (5)

where µ – is normalized (probability) measure, concentrated on D. D-optimal continuous design
denotes measure µ∗, which satisfies equality

µ∗ = arg max
µ

Ψ(µ). (6)

We suppose satisfaction of the conditions under which there exist Y ∗ and µ∗.
Methods, developed in (Fedorov 1972) and (Wynn 1970), mainly solve a problem of numerical

calculation of µ∗. In some cases, especially for large values of N , µ∗ that is received as a result of
numerical procedures can serve as a good approximation of Y ∗.

But if N is comparatively small or measure µ∗ and (or) Y ∗ are not unique, one needs other
methods for finding Y ∗. It is obvious that large number of variables, complexity of function Ψ
and possible lack of unique solution make ineffective general methods of finding a global extremum
(including random search).

Below we will discuss special methods which use approaches developed while solving problems
of distribution modeling.

2 Numerical simulation

Let λ – be a probability measure on D and Ψl(X) – be orthonormal with respect to λ system of
functions. Then

∆2
n,N (Y ) =

(n+N)!

n!N !
Φ(Y )

is a distribution density with respect to measure

λN (dY ) =

N⊗

l=1

λ(dXl).

For proof see (Ermakov 1975).
Thus, Y ∗ is the mode of distribution ∆2

n,N . By getting computer realizations of the distribution
one can estimate its mode. If a "spike" in the point of global extremum is high enough and other
extremums are not too close to it, the procedure can be very effective provided the modeling algo-
rithm is also effective. The simplest sampling method demands at the average M |D| calculations of
Ψ(Y ), where M = sup

Y ∈D
Ψ(Y ). Estimation of value M is a matter of some difficulty. Normally this

estimate is very over-evaluated. But even with good knowledge of M , effectiveness of the sampling
method can be very low.

Author together with Misov (2005, 2009) managed to develop effective methods of modeling
∆2
n,N that use its features. Methods of composition and an inversion formula were used.
Previously it was considered that for modeling ∆2

m,N only the sampling method can be used. This
method demands estimates of the density maximum value. For this matter, besides the well-known
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case of polynomial regression on interval, one can only suggest using the Adamar inequality, which
usually leads to over-evaluated result.

In this case computational complexity of the sampling method is estimated as

O

(
nn+3

n!

)(
max

x∈D,i=1,n
|ϕi(x)|

)2n

, (N = n),

In papers Ermakov and Missov (2005) there were constructed methods with estimate of the com-
plexity O(n2n−1). This is a rather rough estimate but it shows considerable decrease of complexity,
which is pointed out in the next table for specific n.

n=2 3 4 5 6 7 8 9 10 20 50
0,375 0,427 0,129 0,066 0,035 0,019 0,011 7, 1 · 10−3 4 · 10−4 5, 6 · 10−5 1, 26 · 10−9

Specific calculations were conducted. For the case of polynomials of the third degree with two
variables (n = 10) the ratio between average time of the suggested method and average time of the
sampling method turned out to be 4 · 10−4 (which coincides with the value in the table).

The use of the method for test variant of the polynomial regression on interval showed good
results. In comparison with the simple random search of extremum for polynomial regression n 6 10,
it gave the gain of ≈ 3 degrees.

The following tables show results of the search for exact D-optimal designs D = [0, 1] for quadrat-
ic regression with 4 points of observations

N x1 x2 x3 x4
500 0,002942 0,503165 0,508371 0,998531
1000 0,002942 0,503165 0,508371 0,998531
2000 0,002177 0,500525 0,501087 0,999951
5000 0,000550 0,500346 0,500731 0,999992
10000 0,000014 0,500022 0,500132 0,999994

And for regression like c1 + c2x+ c3e
x.

N x1 x2 x3 x4
500 0,006889 0,415713 0,448710 0,983057
1000 0,003014 0,524322 0,534542 0,991139
2000 0,003322 0,424577 0,505026 0,999384
5000 0,008751 0,471999 0,515507 0,998711
10000 0,000231 0,491175 0,498388 0,988331

Obviously the results can be made more precise with the use of the other methods (e. g. the gradient
method).

Calculations up to m = 15 and n close to m in one-dimensional case show encouraging results.
Some complications arise for high-dimensional regions D, when there exist a lot of points with equal
global extremum, and also in case when the number of linear independent functions is substantially
less than the number of points where experiment was conducted (smeared extremum). In the last
case one should search for a continuous design.

Thus, the modeling method turns out to be rather robust and have the following advantages:
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a) Universality — it can be applied in case of any orthonormal system ϕl and any probability
measure λ.

б) It surpasses known methods of the search for a global extremum in terms of effectiveness.

3 Disadvantages and its overcoming

The next disadvantages takes plase

a) With growth of N , while n is fixed, the modeled distribution becomes more and more "diffuse"
which substantially slows finding Y ∗.

б) The method also works badly in case when there are a lot points that take global extremum
value.

The disadvantages listed above can be overcome if one uses the Metropolis method. Preliminarily,
let us point out a statement. If function Ψ(Y ) is non-negative, Ψ(Y ) 6M , then the following equality
takes place (Ermakov 1975).

lim
m→∞

Ψm(Y )∫
Ψm(Y )λN (dY )

= χ(Z), (7)

where χ(Z), Z ∈ Z — is the uniform distribution with respect to measure λN on the set Z of global
supremums of function Ψ(Y ).

Obviously, ifm is large enough then all realizations of the random vector Ξ with density CΨm(Y )
will be close to points of the set Z, and additional selection of realizations that correspond to the
largest values of Ψm will permit to practically solve the problem, i.e. to get a number of realizations
of Ξ.

As it is known, the Metropolis method generalized by Hastings consists in modeling a specially
constructed Markov chain with transition density pi(x → y) with respect to measure λN , which is
chosen randomly to a certain degree, and in verification of the certain condition.

If the chain is in state xi, then yi+1 is found as a realization of the density p(xi → y). After that
with probability ai

Ψm(yi+1)pi(yi+1 → xi)

Ψm(xi)pi(xi → yi+1)
= ai, (8)

one supposes that xi+1 = yi+1 and with probability 1− ai that xi+1 = xi .
Stationary distribution of the resulting Markov chain, which has transition density

Ai(X → Y ) = min(1, ai), (9)

is
Ψm(Y )

/∫
Ψm(Y )λN (dY ).

Received realizations of the distribution, close to uniform on the set of extremums of Ψ(Y ), will
permit to select exact D-optimal plans which satisfy additional conditions.

Emerging problems:

a) To check if the Markov chain exited to the steady (stationary) mode.

б) To accelerate process of the chain’s exit into the stationary mode.

The suggested method can be rather complex in terms of calculation, but growing possibilities
of modern computers give much prospect of its future realization for rather large values of n.
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Abstract: A typical model for geostatistical data when the observations are counts
is the spatial generalised linear mixed model. We present a criterion for optimal sam-
pling design under this framework which aims to minimise the error in the prediction
of the underlying spatial random effects. Our criterion is derived by performing an
asymptotic expansion to the prediction variance. We perform a computational study
to investigate the effect of the parameters of the model in deriving the optimal de-
sign and find that, contrary to the widely-used space-filling designs, the mean of
the spatial process has a significant effect. Our results are applied to the Norway
precipitation data and the rhizoctonia disease data.

Keywords: Generalised linear mixed models; Geostatistics; Predictive inference;
Sampling design.

1 Introduction

One of the most frequently used model for the analysis of geostatistical count data is the spatial
generalised linear mixed model (SGLMM) (Diggle et al. 1998). Applications of SGLMM include
Diggle et al. (2002) which studied the risk of malaria in Gambia, Diggle et al. (1998) which
looked into residual contamination from nuclear weapons testing and campylobacter infections
in UK, Zhang (2002) which analysed a root disease in an agricultural study, and Eidsvik et al.
(2009) which examines precipitation data for the purpose of weather forecasting and for operating
hydropower plants.

In particular, this model class assumes the existence of an unobserved Gaussian random field
over the region of interest and that the observations, drawn at fixed locations, are conditionally
independent given the value of the random field. The distribution of the random field may
depend on unknown parameters and the objective is to use the sample to predict the value of
the random field at every location in the region. The “plug-in” approach is a common method
for prediction in these models from a frequentist point of view (Christensen and Waagepetersen
2002; Evangelou et al. 2011) where in the first stage an estimate of the model parameters is
obtained and in the second stage the predictive distribution of the random field is constructed
conditional on the data and the parameter estimates.

The objective of spatial predictive design is to select the sampled locations within the region of
interest in order to optimise, in some sense, the predictive capability of the sample. In summary,
the strategy of optimal design comes down to developing some optimality criterion, such as the
average prediction variance, and then searching over all possible sampling configurations for the
optimal value of the criterion. We focus in the case where the sampling has already taken place
at some locations and the data is available but either because there are more resources available
or because the prediction error is too high more data is to be sampled. That is we seek to
augment the current sampling scheme with new locations. The available data may be used to
infer about the parameters of the random field which help decide where to sample from.

∗Corresponding author: ee224@bath.ac.uk
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A large part of the literature is concerned with optimal predictive designs for Gaussian models
(e.g. Cressie et al. 1990; Martin 2001; Müller 2007; Heuvelink et al. 2010) which tend to be
uniformly spaced while some development towards optimal SGLMM designs has been made in
Diggle and Lophaven (2006) and Eidsvik et al. (2009). Nevertheless the field is still very new
with room for further development. A drawback in applying the ideas of optimal experimental
design in the context of SGLMM is that in this case the optimality criteria don’t exist in closed-
form. One solution is to evaluate them using Monte-Carlo approximations but this approach is
too computationally intensive due to the fact that in practice the design criterion needs to be
evaluated for a potentially large number of candidate designs in search for the optimal one.

Alternatively, Nychka and Saltzman (1998) and Royle and Nychka (1998) proposed a model-
free approach from a wholly geometric point of view where the sampling sites are chosen in a
way that the region of interest is covered uniformly and therefore there is no need of numerically
evaluating the estimation and prediction error. Moreover, uniform designs tend to be very similar
to Gaussian optimal designs (Royle and Nychka 1998). On the other hand, it is not clear how a
uniform design performs in the context of SGLMM. The reason is that, contrary to the Gaussian
model, the prediction error not only depends on the variance of the underlying process but also on
its mean. Hence, it is fair to say that if the mean varies highly within the region a uniform design
would not be appropriate. To support this hypothesis, let us consider the following example.
Suppose that the observations are binary with probability of “success” varying from 0 to 1 across
the region of interest. If a uniform design is implemented part of the sample will be associated
with areas with very high or very low success probabilities; however, the data from these areas
exhibit almost no variability and, in essence, are useless. We believe that, in choosing a good
design, more weight should be given in areas where the probability of success is closer to half,
i.e. where the variability of the data is higher.

In this article, we propose a model-based criterion for constructing optimal predictive designs
based on an approximation to the predictive variance. We assume that prior data is available
and the objective is to augment the given sampling network. Our strategy proceeds as follows.
By fitting a SGLMM to the data we construct a prediction map for the mean and variance of the
spatial random field. These estimates are used in the evaluation of the proposed design criterion
and an exchange algorithm is implemented to search for the best design.

In the next section we describe the SGLMM and derive an approximation to the predictive
variance which we use as our design criterion. In section 3 we present the exchange algorithm
used for searching for the optimal design and in section 4 we illustrate our method through a
computational study and two examples. Finally, section 5 presents a summary of the conclusions
of this article.

2 An approximate predictive design criterion

2.1 Model

We assume a spatial domain S and an isotropic Gaussian random field Z defined over S. Our ob-
jective is to predict Z for given observations y = {y1, . . . , yk} drawn at k fixed, distinct locations
S = {s1, . . . , sk} ∈ S called the sampling design. The SGLMM assumes that the observations
are conditionally independent given the value of the random field on S with distribution from
the exponential family. Furthermore, each yi corresponds to repeated sampling of size ni from
location si. In the binomial case ni may be interpreted as the number of trials in a Bernoulli
experiment and in the Poisson case as the length of time that the sampling is taking place.

The geostatistical approach to SGLMM assumes further that the covariance between two
components of the random field, Z(s) and Z(s′), at locations s, s′ ∈ S is a function of the
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distance ‖s− s′‖. In particular we denote

Var(Z(s)) = ν2 + τ2

Cov(Z(s),Z(s′)) = τ2c(‖s− s′‖/ρ)

where (ν2, τ2, ρ) are covariance parameters termed nugget, partial sill and range respectively
and c(·) is a positive definite function defined on (0,∞) called the correlogram. Two particular
versions of the correlogram that we make use in the examples of section 4 are the following.

• Exponential : c(h) = exp(−h),

• Spherical : c(h) = 1− 1.5h+ 0.5h3 if 0 < h < 1 and c(h) = 0 if h ≥ 1.

Let Z = (Z1, . . . , Zk) denote the components of the random field associated with the locations
in the sampling design S and let λ and Σ denote the mean vector and the variance-covariance
matrix respectively. Also let f(·) denote the probability density/mass function of its arguments
so that

f(z;λ,Σ) = (2π)−
k
2 |Σ|− 1

2 exp
{

(z − λ)TΣ−1(z − λ)
}

and

f(ys|zs) ∝ exp{yszs − nsψ(zs)}

where ψ(·) is a known function; for example under the binomial model with canonical link
ψ(z) = log(1 + ez) and for the Poisson model with canonical link ψ(z) = ez.

2.2 Prediction variance

Consider the question of predicting Z(s) from y for a particular location s ∈ S. A measure of
the uncertainty in prediction is the conditional prediction variance, Var(Z(s)|y;S) where in the
notation we make explicit the dependence of the variance on the sampling design S. The average
conditional prediction variance over S for given data y is defined as

1

|S|

∫

S
Var(Z(s)|y;S) ds (1)

where |S| denotes the volume of S. Booth and Hobert (1998) are among those who advocate
using (1) as a measure of the prediction accuracy. To that end, a suitable criterion for choosing
a good sampling design is to make (1) small; however, in theory, S is a continuous region so
prediction at all locations in it is infeasible. In practice prediction is performed over a finite, fine
grid, S̄, covering S and the optimality criterion reduces to

1

|S̄|
∑

s∈S̄
Var(Z(s)|y;S). (2)

The criterion in (2) has been extensively used for the derivation of sampling designs for Gaussian
models (e.g. Cressie et al. 1990). However, for SGLMM the prediction variance is not known in
closed form so exact calculation of (2) is impossible (Booth and Hobert 1998). Below we derive
an approximation in closed-form to the prediction variance which will be used for defining our
design criterion.

We assume increasing-domain asymptotics in the spirit of Mardia and Marshall (1984), i.e.
that k →∞ and that the rows of the variance-covariance matrix Σ are absolutely summable as
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k → ∞. Furthermore we assume that k/ni → 0 as k → ∞. These assumptions are made in
order to facilitate the application of Laplace approximation to the conditional distribution of the
random field given the observations.

Let σ2 = Var(Z(s)) = ν2 + τ2, c = Cov(Z,Z(s)), and

ẑ = ẑ(y) = argmax
z

f(y, z;λ,Σ).

Then by an application of Laplace approximation (see Barndorff-Nielsen and Cox 1989) the
conditional distribution of Z|y is normal with mean ẑ and variance-covariance matrix Ĥ−1,
written

Z|y ∼ N(ẑ, Ĥ−1), (3)

where Ĥ = D̂y + Σ−1. D̂y is a diagonal matrix with its ith component equal to the second order
derivative of − log f(yi|zi) with respect to zi evaluated at ẑi, namely to niψ′′(ẑi). From (3) the
prediction variance is approximately equal to (see Appendix A)

Var(Z(s)|y;S) ≈ σ2 − cT(D̂−1
y + Σ)−1c. (4)

The order of the approximation in (4) is O(kn−2) where n = min{n1, . . . , nk}. (For details about
the order of the approximation see Evangelou et al. (2011).)

Now suppose that we are looking to augment our sampling scheme with an additional set
of l new locations Q = {q1, . . . , ql} ⊂ S \ S which will result data X. Consider the expected
prediction variance

Ex Var(Z(s)|y,X;S,Q) ≈ σ2 − cTSQ Ex(D̂−1
yx + ΣSQ)−1cSQ (5)

from (4), where D̂yx = BlockDiagonal{D̂y, D̂x}, cSQ and ΣSQ denote the augmented covari-
ance vector and variance-covariance matrix respectively, and the expectation is with respect to
the conditional distribution of X|y. Exact evaluation of the expectation Ex(D̂−1

yx + ΣSQ)−1 is
cumbersome unless some numerical method is used. On the other hand the elements of D̂−1

yx

are of order O(n−1) so an alternative criterion to (5) would be to replace Ex(D̂−1
yx + ΣSQ)−1 by

(Ex D̂
−1
yx + ΣSQ)−1. Furthermore Ex D̂

−1
yx = BlockDiagonal{Ex D̂

−1
y ,Ex D̂

−1
x } and we note that

D̂yx depends on X only through ẑ(y,X) so Ex D̂
−1
y = Eẑ D̂

−1
y and Ex D̂

−1
x = Eẑ D̂

−1
x . By

noting that ẑ(y,X) is approximately equal to Z|y we deduce that Ex D̂
−1
y ≈ D̂−1

y and the ith
diagonal element of Ex D̂

−1
x is approximately equal to n−1

i Ew(1/ψ′′(W )) where the expectation
is taken with respect to W ∼ N(µ̂y, σ̂

2
y) with µ̂y and σ̂2

y being the prediction mean and variance
respectively of the random field at the location associated with the index i given the data y.

Let Kx = Diag{n−1
i E(1/ψ′′(W ))} where i ranges over all locations associated with Q and

Kyx = BlockDiagonal{D̂−1
y ,Kx}. In certain cases the expectation in Kx may be computed in

closed form. For example for the binomial model with canonical link

E(1/ψ′′(W )) = 2 + exp

(
−µ̂y +

1

2
σ̂2
y

)
+ exp

(
µ̂y +

1

2
σ̂2
y

)

and for the Poisson model with canonical link

E(1/ψ′′(W )) = exp

(
−µ̂y +

1

2
σ̂2
y

)

but alternatively a one-dimensional Gaussian quadrature method can be used.
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In view of the above, the approximate expected prediction variance at location s ∈ S under
the design S ∪Q becomes

V̂ar(Z(s)|y;S,Q) = σ2 − cTSQ(Kyx + ΣSQ)−1cSQ. (6)

Note the dependence of (6) on the estimated mean of the random field and that fact that it is
positive, as expected.

From (6) the optimal SGLMM design criterion is: Choose Q ⊂ S \ S to minimise
∑

s∈S̄
V̂ar(Z(s)|y;S,Q). (7)

We note that although the criterion (7) is not exact for the expected predictive variance, we
nevertheless believe that it maintains the general structure of the optimal predictive design for
SGLMM and proceed by using it as the optimal design criterion.

3 The exchange algorithm

Searching for the set Q that minimises (7) can be computationally challenging. If l sites are to
be selected out of N possible candidates then in theory the design criterion has to be computed
N -choose-l times. Even for moderate sizes this number is too large so an alternative exchange
algorithm is proposed. Royle (2002) reviews the basic exchange algorithm and some of its
extensions.

The basic exchange algorithm is described as follows. For a given configuration S ∪Q and a
set of candidate points (S ∪ Q)c = S̄ \ (S ∪ Q), fix q ∈ Q and compute the design criterion by
exchanging q with each of the elements of (S ∪Q)c. If no better design is found then q remains
in the design otherwise q is replaced by the element of (S ∪Q)c with the best value of the design
criterion. This process is repeated for every q ∈ Q and iterated until no better design is found.
The exchange algorithm is guaranteed to converge but it is worth pointing out that its limit is
not necessarily the optimal design. Nevertheless we find that it is a good compromise between
computational speed and quality of the result. Below we describe how an update of the design
criterion is computed in our implementation of the exchange algorithm.

Let A = Kyx + ΣSQ and suppose without loss of generality that we are looking to update the
element associated with the last row and column of A. Note first that, since σ2 is a constant,
we only need to evaluate cTSQA

−1cSQ.
Write cSQ and A as a partitioned vector and a partitioned matrix respectively in the form

cSQ =

(
u
v

)
A =

(
B u
uT b

)
.

Also let β = b− uTB−1u. Then

A−1 =

(
B u
uT b

)−1

=

(
B−1 0
0T 0

)
+

1

β

(
B−1

−1

)(
B−1 −1

)

so

cTSQA
−1cSQ = uTB−1u+

1

β
(v − uTB−1u)2

therefore, in the exchange of a single element we may only consider maximising the quantity

∑

s∈S̄

(v − uTB−1u)2

b− uTB−1u
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Figure 1: Simulation from the binomial SGLMM. The random field is shown by a greyscale and
the binomial observations are indicated at the respective locations.

where the component uTB−1u is computed only once for each element of Q. In fact, by consid-
ering the block structure of B in terms of components associated with S or Q, its inverse can
be computed by employing the well-known formula for the inverse of a block matrix (see Seber
2008, section 14.2). Therefore the inverse of the block associated with S is computed once for
the whole execution of the algorithm and for each update the inverse of a matrix of dimension
(l − 1)× (l − 1) is needed each time.

4 Examples

4.1 A simulated example

We consider a regularly-spaced, 11× 11 square grid within [0, 1]× [0, 1] and a Gaussian random
field having exponential covariance function with parameters ν2 = 0.1, τ2 = 0.3, and ρ = 0.2
corresponding to nugget, partial sill and range. We also set the mean of the random field at
co-ordinate (x1, x2) to −2.5 + 5.0 × x1, i.e. the mean increases linearly as we move from left
to right from −2.5 to 2.5. The current sampling design consists of the locations indicated by
a “◦” in Figure 2 and the observations follow the binomial SGLMM with canonical link and the
number of trials is n = 30 at each location.

We simulate once from the Gaussian random field and, conditionally, from the binomial
model at the sampled locations. The sample is shown in Figure 1. Note that the conditional
variance of the observations given the value of the random field is n ez(1 + ez)−2 and, due to the
non-constant mean, the observations which are closer to the left or the right sides of the grid
have very low variability while the observations that are equally far from the left and the right
sides have the highest variability.

We are interested in augmenting the current sampling scheme by sampling at l = 6 more
locations where the sample size at each location is n = 30. We implement an optimal SGLMM
design and compare it with the space-filling design. The space-filling design suggests sampling
from locations at the far left and the far right of the grid, the ones indicated by a “×” in
Figure 2 while the SGLMM design suggests locations from the centre of the grid, indicated by
a “+”. As we would expect, the locations suggested by the SGLMM-optimal design correspond
to areas with higher variability while in this case the space-filling design recommends sampling
from locations with very little variability. In fact a random sample from the locations suggested
by the space-filling method were 1, 1, 5, 29, 29, 27 (ordered from bottom to top and then left to
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Figure 2: Predictive design for the simulated example. Showing current design (◦), space-filling
augmented locations (×), and optimal SGLMM augmented locations (+). The greyscale shows
the Bernoulli variance.

right) while a random sample from the locations suggested by the optimal SGLMM design gave
16, 1, 10, 19, 6, 17. Evidently the second set of observations is far more valuable in predicting the
random field than the first. In particular, the average prediction variance with the original data
is 0.2986. If we augment the data with the observations from the space-filling design the average
prediction variance reduces to 0.2872 (our design criterion (7) estimates this to be 0.2876) but
if instead we use the data from the optimal SGLMM design the average prediction variance
becomes 0.2826 (estimated to be 0.2811).

4.2 Rhizoctonia disease

The rhizoctonia root rot is a disease affecting the roots of plans and hinders the absorption of
water and nutrients by them. In this study 15 plants were pulled out of each of 100 randomly
chosen locations in a farm and the number of crown roots and infected crown roots were counted
for each plant. The number of total roots at each location varies from 80 to 197 with an average
of 138 suggesting that each plant has on average 9 crown roots.

Zhang (2002) treated the data as binomial with the random field having constant mean and
spherical covariance structure. This example was also analysed by Evangelou et al. (2011) using
approximate Laplace approximation. Figure 3 shows the prediction and prediction variance using
their method. Note that, due to the assumption that the mean being constant and the fact that
the variance of the spatial random effects is not very high, the variation in the predicted random
field is relatively small. As a result, the regions with the highest variability tend to be the ones
which are the least represented in the sampling design.

We consider the question of augmenting the current network by sampling 15 plants from each
of l = 8 new locations (n = 135 at each location) chosen from a regularly-spaced, square grid of
242 points. The locations suggested by the space-filling and the SGLMM designs are shown by
a “×” and a “+” respectively in Figure 4. The two designs appear very close except for two points
where they are very different. This is not surprising in this case since, as we explain below, due to
the large sample size at each location, the variation in the predicted random field has very little
effect in the design criterion. Therefore the variability is higher at the most isolated locations
which is also what the space-filling design tends to select. However consider two alternative
scenarios where the available resources allow us to sample only 5 plants (n = 45) from each new
location and in the other case only one plant (n = 9). The two designs are shown in Figure 4 with
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Figure 3: Prediction of the random field in the rhizoctonia example. Showing the predictive
mean (left) and the predictive variance (right).

Table 1: Total prediction variance under the Optimal SGLMM and space-filling designs for
different samples for the rhizoctonia example.

15 5 1
Optimal SGLMM 136.919 137.681 139.451
Space-filling 136.952 137.750 139.574

a “V” and a “I” respectively. In the case of 5 plants there is more departure from the space-filling
design and in the case of 1 plant there is a big difference. The explanation for this is because the
sample size at each location enters into our design criterion as n−1e−ẑ(1 + eẑ)2; therefore, when
n is large the effect of the mean of the random field in the design criterion is very small so the
optimal design tends to be close to the space-filling design. In the opposite case, the mean of
the random field has a significant effect. This is also verified by comparing the total prediction
variance under the space-filling design with the optimal SGLMM design for the different sample
sizes as shown in Table 1. We observe that as the sample size increases the difference in the
design criterion is reduced.

4.3 Precipitation in middle Norway

The number of rainy days for a region in the middle of Norway were recorded for a period of
n = 61 days at 92 monitoring stations. The current monitoring network is shown in Figure 5.
The data was analysed by Eidsvik et al. (2009) who used a binomial SGLMM with the random
effect assumed to be a Gaussian random field having constant mean and exponential covariance
function with no nugget effect. In their analysis the authors derived that the observations from 4
stations were outliers (circled in Figure 5) and only used data from k = 88 stations. Within the
network there were also 6 stations not in operation (marked by a “�”) and the authors considered
the improvement in prediction had data being obtained from these stations as well.

We consider prediction at a fine grid of 587 points. Using the data from the 88 locations the
total prediction variance is 27.33 while assuming that data from the additional 6 stations was
provided the total prediction variance from (7) reduces to 26.73.

Assuming that we have the power to place the 6 monitoring stations not in operation at
different sites, the space-filling and the optimal SGLMM augmented designs were derived. These
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Figure 4: Predictive design for the rhizoctonia example. Showing current design (·), space-
filling augmented locations (×), and optimal SGLMM augmented locations when sampling 15
plants (+), 5 plants (V), and 1 plant (I).
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Figure 5: Norway precipitation network. Samples are obtained from locations marked by a “·”
and the ones in circle are considered outliers. Al locations that did not register data are marked
by a “�”. Also showing the space-filling augmented locations (×) and the optimal SGLMM
augmented locations (+).
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are marked by a “×” and a “+” respectively in Figure 5. All three designs agree at one location at
coordinate (8.1, 63.5) but apart from that there are significant differences. The total prediction
variance under the space-filling design is 26.68 and for the optimal SGLMM it is 26.66. Both
suggestions are an improvement compared to the current network.

5 Discussion

In this article we propose a criterion for augmenting a spatial design under the SGLMM frame-
work when data is available. Our design criterion is derived as an approximation to the expected
predictive variance of the random field and it can be evaluated with little computational cost as
it avoids making use of the typical MCMC used for these models. Our approximation is based
on Laplace approximation and is valid under the increasing-domain asymptotic framework.

We demonstrate theoretically and through our examples that, contrary to the more popular
Gaussian model, optimal designs for SGLMM may not be regularly spaced but the level of non-
uniformity depends on the structure of the conditional mean of the random field and on the
sample size.

A number of issues still remain. From a computational point of view, searching for the optimal
design can be very hard if the number of candidate locations is large. Questions related to the
construction of predictive designs in the spirit of Smith and Zhu (2004); Zhu and Stein (2006);
Zhu and Zhang (2006); Zimmerman (2006) such as how to incorporate parameter uncertainty in
it or how to create a design without any available data still remain.

A Derivation of the approximate predictive variance

Here we derive the approximation to the predictive variance given in (4).
First note that by an application of the formula for matrix inversion

(A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1,

we have

Ĥ−1 = Σ− Σ(D̂−1
y + Σ)−1Σ (8)

Therefore if s ∈ S the conditional variance of Z(s) is the corresponding diagonal element of (8)
which is given by (4).

Now suppose s /∈ S. Using the rule of iterated expectations and the fact that Z(s)|Z,y =
Z(s)|Z,

Var(Z(s)|y;S) = E Var(Z(s)|Z,y) + Var E(Z(s)|Z,y)

= σ2 − cTΣ−1c+ cTΣ−1Ĥ−1Σ−1c

= σ2 − cT(D̂−1
y + Σ)−1c

by (8), as given in (4).
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Abstract: Industrial Design of Experiments (DoE) contributes to efficient product development and 
improvement of production processes. This paper is about DoE in R in general, and in particular about 
implementation of the most important tools for industrial DoE, in the spirit of Montgomery (2001) or 
Box, Hunter and Hunter (2005). It outlines the most important aspects of a suite of R packages 
developed by the author: DoE.base, FrF2, DoE.wrapper and RcmdrPlugin.DoE. Selected aspects 
of the packages’ strategy are discussed in more detail, and areas with potential for further 
improvement are pointed out. 
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1 Introduction 
Industrial design of experiments (DoE) is an important contributor to data-driven product 

development and process improvement in various industries. Many commercial software packages 

offer tools for this purpose, some in direct connection to the well-known Six Sigma initiative. For 

example, at my former employer Ford Motor Company, the advent of Six Sigma brought access to 

MinitabTM (Minitab Inc 2008) and its DoE facilities to many engineers. In addition, a Ford-internal 

Excel tool (Grömping 1999), based on a complete catalogue of regular fractional 2-level designs by 

Chen, Sun and Wu (1993), supported customized planning of experiments with a VBA interface that 

made it easy to explore and exploit details of the confounding structure of an experimental design.  

Let me now explain how I got involved in DoE R packages. Being no longer in industry but in 

academia and having come to appreciate R for many statistical tasks, I was still interested in Design of 

Experiments and played with some application problems. Trying to do simple things in R, I got quite 

frustrated by the lack of support in R for things that used to be easy before: I found packages 

conf.design (Venables 2000-2010), BHH2 (Barrios 2005-2009) and AlgDesign (Wheeler 2004-2010) 

that were principally able to create regular fractional factorial 2-level plans, but there was no simple 

way of looking at the confounding structure of an experiment as comfortably as I was used to, and 

there was nothing remotely convenient that would allow specification of user requirements (like 

estimable 2-factor interactions) and construct a plan from there.  

In the autumn of 2008, I decided to spend a sabbatical semester on implementing foundations of 

industrial DoE in R. As preparatory steps, I had started the Experimental Design Task View in 

February 2008, and had investigated R literature on the topic, in particular the “White Book” 
(Chambers and Hastie 1993), where functions fac.design and oa.design were mentioned 

which didn’t exist in R. I decided to create software myself that should  
• be close to prior work, where useful (e.g. functions fac.design and oa.design modeled 

after what I found in Chambers and Hastie 1993) 

• allow users to specify their needs in terms as close to the problem as possible, i.e. not by 

doing mathematical investigations into what generators one would have to specify for 
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achieving the desired behavior of the experimental plan, but by specifying estimable effects 

(two-factor interactions only) 

• provide appropriate defaults for standard uses 

• allow expert users to specifically fine-tune and deep-dive things, again emphasizing that 

technicalities should be done by the machine rather than by the user 

• incorporate the many useful design catalogues available from the literature (cf. also 

Section 4.1) 

• be state-of-the-art initially particularly w.r.t. fractional factorial 2-level designs 

• provide at least the basic orthogonal arrays available in standard software like MinitabTM 

• eventually also offer response surface designs and D-optimal designs 

• incorporate convenience features like exporting and re-importing designs for allowing 

response entry outside of R without error-prone cut- and paste activities 

• provide a more or less self-explanatory GUI for occasional or programming-illiterate users,   

which should cater for inexperienced experimenters as well as for experts. 

Following a benchmark of various commercial products for industrial DoE, and following a deep dive 

of the literature and other R packages, a suite of four packages for industrial DoE (with one additional 

auxiliary package) was implemented, cf. Section 3.  

Section 2 of this paper will discuss the general development of DoE implementation on the 

Comprehensive R Archive Network CRAN (URL: http://cran.r-project.org), Section 3 will discuss 

some basic aspects of my suite of packages for industrial DoE, and Section 4 will look into a few 

mathematical aspects of these packages in more detail. An outlook to future developments with a call 

for contributions concludes the paper. Of course, a short paper like this can only give a rough 

overview. The software has an extensive online documentation, and the writing of tutorials is under 

way.  

2 R embraces DoE 
The growth over time in the number of R packages related to DoE helps to get an idea about the 

development of DoE in R; the packages from the CRAN Task View on experimental design 

(Grömping 2008 to 2011, status August 10, 2011) were taken as “related to DoE”. Figure 1 shows 

development of DoE functionality in CRAN by plotting the number of current task view packages 

available on CRAN at the end of each year, starting in 2000 with the first and only package 

conf.design (Venables 2000-2010). The chart displays roughly exponential growth, similar to what 

can also be observed for R packages on CRAN in general (cf. Fox 2009). 

Note that the above-mentioned task view has so far not considered sample size planning as DoE; 

it centers mainly on planning and analysis tools for multifactorial experiments. Rasch et al. (2011) 

offer many R functions for sample size planning (not yet on CRAN, therefore not in the Task View 

anyway); there may also be packages on CRAN with substantial functionality on sample size 

planning; I suspect that this functionality would be a small part of a package for other purposes, in 

many cases, and would therefore be very cumbersome to find and research, and I have not tried to do 

so. 
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Figure 1: Number of packages already on CRAN vs. calendar year  

for the 37 packages in the CRAN Task View at the time of UseR! 2011 

 

 
 

Figure 2: 18 interrelated packages from the CRAN Task View Experimental Design 

Arrows indicate that the package pointed to directly depends on or suggests the pointing 

package, e.g. crossdes depends on AlgDesign. 

The five packages enclosed in the red oval are those from the suite to be discussed below. 
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Among the 37 packages of the task view, only 18 are somehow related to each other; many are 

singletons and do not depend on or suggest any other packages from CRAN (or at least not any other 

DoE packages), nor are they depended on or suggested. The package suite, which will be the focus of 

attention for the rest of this article, is among the 18 packages that relate to each other. Figure 2 shows 

the direct relations. 

3 R packages for industrial DoE 
This section gives a broad overview over the suite of packages for industrial DoE. It first points out 

the main purposes of the four principal packages of the suite. The second sub section starts from the 

opposite perspective, discussing which task in industrial experimentation can be accomplished with 

which R tool, including also packages from outside the suite by the author. In the third sub section, 

implementation of some fundamental principles is discussed in more detail. Throughout this chapter, 

some aspects are illustrated using the following example: an experiment is to be conducted for 

investigating the dependence of sensor measurements from a system for classifying the occupant of a 

passenger seat on seat characteristics; the system consists of a mat equipped with sensors and placed 

in the passenger seat of the vehicle between foam and seat cover, together with some electronic 
devices and an algorithm. Seat characteristics include foam hardness (Foam), side bolster stiffness 

(Bolster), aged or new condition (Aged), and three further factors D, E and F, each considered at 

two levels. The response is a sensor activation measurement, simply denoted as y. This experiment is 

modeled on a real experiment conducted by an automotive supplier. Neither details nor data are 

available, though. 

3.1 Overview of the suite of R packages for industrial DoE 

As was mentioned before, a suite of four R packages plus one auxiliary package has been developed. 

These build on each other hierarchically, cf. Figure 3. 

 

DoE.base 

↓↓↓↓ 

FrF2 

↓↓↓↓ 

DoE.wrapper 

↓↓↓↓ 

RcmdrPlugin.DoE 
 

Figure 3: Suite of packages for Design of Experiments  

(Grömping, 2007-2011, 2009-2011a,b,c, 2010-2011) 

 

In brief,  
• package DoE.base provides full factorial designs (fac.design, optionally with blocking) 

and general (also mixed-level) orthogonal arrays (oa.design); it also provides 

infrastructure like the class design, functions for printing, summarizing and plotting, for 

exporting and re-importing designs and for adding a response to an existing design.  

Complete catalogue for 128 run designs 
kept separate because of size: 
FrF2.catlg128 
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Furthermore, it provides a few default analysis functions for linear models for designs with 

response data. 
• Package FrF2 provides regular (function FrF2) and non-regular (function pb) 2-level 

fractional factorial orthogonal arrays. Function FrF2 allows blocking and split-plotting, 

function pb does not. The package also provides a few functions for effects plots. 

• Package DoE.wrapper provides an interface for functionality from various other packages, 

including D-optimal designs from package AlgDesign (Wheeler 2004-2010), response surface 

designs from package rsm (Lenth 2009), and space-filling designs for computer experiments 

from packages lhs (Carnell 2006-2009) and DiceDesign (Franco, Dupuy and Roustant 2010). 

This would also be the place for implementing further extensions like mixture designs. 

• The final package RcmdrPlugin.DoE provides access to a lot of the functionality (but by far 

not all) through a GUI based on the R Commander (Fox 2003-2011, 2005, 2007). 

 

Table 1: The example design from (3) printed in standard order 
> print(plan, std.order=TRUE) 
   run.no.in.std.order run.no Foam Bolster Aged D E F 
20                   1     20 soft    soft  new - - - 
19                   2     19 hard    soft  new - - + 
14                   3     14 soft   stiff  new - - + 
25                   4     25 hard   stiff  new - - - 
5                    5      5 soft    soft aged - - + 
17                   6     17 hard    soft aged - - - 
2                    7      2 soft   stiff aged - - - 
4                    8      4 hard   stiff aged - - + 
22                   9     22 soft    soft  new + - + 
7                   10      7 hard    soft  new + - - 
16                  11     16 soft   stiff  new + - - 
12                  12     12 hard   stiff  new + - + 
26                  13     26 soft    soft aged + - - 
30                  14     30 hard    soft aged + - + 
13                  15     13 soft   stiff aged + - + 
1                   16      1 hard   stiff aged + - - 
31                  17     31 soft    soft  new - + + 
15                  18     15 hard    soft  new - + - 
8                   19      8 soft   stiff  new - + - 
24                  20     24 hard   stiff  new - + + 
27                  21     27 soft    soft aged - + - 
32                  22     32 hard    soft aged - + + 
21                  23     21 soft   stiff aged - + + 
9                   24      9 hard   stiff aged - + - 
18                  25     18 soft    soft  new + + - 
3                   26      3 hard    soft  new + + + 
6                   27      6 soft   stiff  new + + + 
10                  28     10 hard   stiff  new + + - 
29                  29     29 soft    soft aged + + + 
11                  30     11 hard    soft aged + + - 
23                  31     23 soft   stiff aged + + - 
28                  32     28 hard   stiff aged + + + 
NOTE: columns run.no.in.std.order and run.no are annotation, not part of 
the data frame 
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Most of the command line programming functions for design creation have at least the parameters  
• nruns for the number of runs,  

• nfactors for the number of factors,  

• factor.names for the factor names and possible also the factor levels,  

• randomize for switching off randomization, if needed 

• seed for the randomization seed 

• replications for the number of replications 

• repeat.only for declaring that the replications are repeated measurements rather than 

proper replications 

As a principle, the packages try to have reasonable defaults so that users can get away with very brief 

function calls for standard tasks. For example,  

FrF2(32, 6) (1) 

creates a regular fractional factorial 2-level design with 32 runs in 6 factors – in fact the best possible 

such design. Alternatively, one could also ask for the smallest design with resolution at least V for 

6 factors by the command 

FrF2(nfactors=6, resolution=5) (2) 

Table 2: Summary of the design from Table 1 
Call: 
FrF2(32, 6, factor.names = list(Foam = c("soft", "hard"), Bolster = c("soft",  
    "stiff"), Aged = c("new", "aged"), D = c("-", "+"), E = c("-",  
    "+"), F = c("-", "+")), seed = 27865) 
 
Experimental design of type  FrF2  
32  runs 
 
Factor settings (scale ends): 
  Foam Bolster Aged D E F 
1 soft    soft  new - - - 
2 hard   stiff aged + + + 
 
Design generating information: 
$legend 
[1] A=Foam    B=Bolster C=Aged    D=D       E=E       F=F       
 
$generators 
[1] F=ABCDE 
 
Alias structure: 
[[1]] 
[1] no aliasing among main effects and 2fis 

 

Both commands yield a randomized design with the same structure. If this design is to be used for an 

actual experiment, it is likely that one wants to customize it by giving some detail on the factors and 

making randomization reproducible by specification of a seed: 

plan <- FrF2(32, 6, factor.names=list(Foam=c("soft","hard"), 
Bolster=c("soft","stiff"), Aged=c("new","aged"),  

D=c("-","+"), E=c("-","+"), F=c("-","+")), seed=27865) 
(3)
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All design creation packages output objects of class design, which are data frames with the three 

attributes desnum (a numeric matrix), run.order (a data frame with run order information for 

switching back and forth between standard order and randomized order) and design.info (a list 

with a lot of design type specific information important for post-processing). There are methods for 

summarizing, printing and plotting such designs. The design created by command (3) is shown in 

Table 1; in support of easy visibility of the experiment’s structure, it has been printed in standard 
order, using option std.order=TRUE for the print method of class design. The summary of the 

design, created by the command summary(plan, brief=TRUE), is shown in Table 2; option 

brief=TRUE suppresses the printout of the design itself. For preserving the class structure, it is 

important to not just add or delete columns but to use specific functions provided for that purpose, 

whenever this should be necessary, for example for adding response data (function 
add.response). 

3.2 Tasks in industrial design of experiments 

This sub section provides the broad picture of the (currently available) functionality in R for creating 

designs useful in industrial experimentation.  

3.2.1 Screening 
Industrial design of experiments often starts with a screening task: relatively many experimental 

factors are simultaneously investigated by designs that are too sparse to deep-dive interactions 

between factors, quadratic effects or the like. Screening tasks can be accomplished by non-regular 2-
level fractional factorial designs (function pb), by low resolution regular fractional factorial designs 

(ideally not resolution III, but a high aberration IV may do; function FrF2), low resolution mixed 

level orthogonal arrays (function oa.design from package DoE.base, supported by function 

show.oas for investigating what is available), or – in case of computer experiments – by space-

filling designs (packages lhs or DiceDesign, or function lhs.design from package DoE.wrapper). 

In extreme situations, even a supersaturated design may be useful for screening; packages mkssd or 

mxkssd (Mandal 2010-2011 and 2011) can create k-circulant supersaturated designs. 

3.2.2 Subsequent analysis of relevant factors 
In an ideal world, screening will point to a subset of important factors, and these are then explored in 
more depth, using a higher resolution regular fractional factorial design (FrF2), a higher resolution 

mixed level orthogonal array (oa.design) or a full factorial design (function fac.design of 

package DoE.base), a second order response surface design (package rsm or e.g. function 
ccd.design from package DoE.wrapper) or a larger space-filling design for a computer 

experiment. Occasionally, for example with run restrictions that prevent the running of a complete 
orthogonal array, one may also want to use a D-optimal design from function optFederov from 

package AlgDesign or function Dopt.design of package DoE.wrapper.  

3.2.3 Combined arrays and augmentation 
The package suite also supports creation of crossed arrays for Taguchi parameter designs and other 
purposes (functions cross.design and param.design in package DoE.base), as well as 

augmentation of existing designs with additional observations for sequential experimentation: 
Function fold.design from package FrF2 applies fold-over to an existing fractional factorial 2-

Optimal Design of Experiments – Theory and Application, Vienna 2011

48



 

level design created with functions FrF2 or pb. Several functions from package DoE.wrapper allow 

to augment designs: ccd.augment augments a regular fractional factorial 2-level design (which 

ideally but not necessarily already has center points) by a star portion for a central composite design, 
functions lhs.augment and Dopt.augment add further observations to space-filling or D-

optimal designs, respectively. (Functionality for combined experiments may have more bugs than 

other parts of the package suite, in particular the respective methods from package DoE.base). 

3.3 Implementation of fundamental principles 

This section describes how the R package suite implements the fundamental principles of 

experimental design, randomization, replication and repeated measurements, blocking and split-

plotting.  

3.3.1 Randomization 
As randomization is very important and often neglected by practitioners, all designs are per default 

randomized. There have been legit user complaints about this, because users often like to get a visual 

impression of the structure of a design, which is of course easier from standard order designs. 
Therefore, the print method for class design has the option std.order=TRUE (default 

FALSE) for displaying the design in standard order, even though it is randomized (cf. also Table 1).  

3.3.2 Repeated measurements and replications 
If measurement accuracy is believed to be insufficient, repeated measurements can help. Note that 

repeated measurements and proper replications are very different concepts. Repeated measurements 

repeat the measurement process only, but not the complete setup of the experimental run. If there are 

n runs with r measurements per run, it is not permitted to simply use all nr measurements in an 

analysis of variance with just one source of error, because measurements of the same run only differ 

in measurement error, while measurements of different runs additionally differ in run setup 

variability. For the occupant classification example, a design with repeated measurements can be 
constructed using the options replications and repeat.only that are available with most 

design generating functions:  

FrF2(32, 6, factor.names=list(Foam=c("soft","hard"), 
Bolster=c("soft","stiff"), Aged=c("new","aged"),  

D=c("-","+"), E=c("-","+"), F=c("-","+")),  
seed=27865, replications=3, repeat.only=TRUE) 

(4) 

As repeat.only is TRUE (default: FALSE), repeated measurement are placed directly next to 

each other in the design, which corresponds to the execution of an experiment with repeated 

measurements. The resulting design can either be analyzed with a random effect for each seat build, 

or, if the analysis is to be kept simple (i.e. without random effects), by analyzing the means from the 

repeated measurement as responses in an unreplicated design. This is supported by the software 
through function aggregate.design, which can aggregate repeated measurements after reshaping 

the design to wide format with function reptowide.  

Sometimes, an unreplicated design is too small for yielding enough power. For example, 

observations within the experiment on seats might be expected to be so variable that 128 runs are 

necessary for the required estimation precision. If that were the case, it would be the best route to first 
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switch to a full factorial in the six factors (i.e., 64 distinct runs) and to replicate this design twice. The 

following command creates such a design. 

FrF2(64, 6, factor.names=list(Foam=c("soft","hard"), 
Bolster=c("soft","stiff"), Aged=c("new","aged"),  

D=c("-","+"), E=c("-","+"), F=c("-","+")),  
seed=27865, replications=2) 

(5) 

Without specifying option repeat.only (which implies the default FALSE), these two replications 

are randomized in separate blocks. There may be controversy regarding the need to account for this 

blocking in the analysis – taking the principle “analysis follows design” literally, this would of course 

be necessary. My personal take on this: this is an additional chance, in case calendar time is suspected 

to have an influence; however, it is no more necessary to do a blocked analysis than if all 128 runs 

had been randomized in one go.  

Note that the distinction between repeated measurements and replications is NOT an academic 

point only! For the real-life version of the occupant classification example, repeated measurements 

were conducted, placing a defined dummy on the seat and measuring, repeating that process (placing 

and measuring) three times for each seat build. Initially, these measurements were believed to be 

replications and were analyzed as such. This led to all 31 effects of the 32 run experiment being 

highly significant, which of course made me very suspicious and eventually led to the understanding 

that the seat building process used in experimentation was extremely variable (quite different from the 

seat building process used in production, which was believed to be stable enough to justify neglecting 

its variability). Re-analyzing the data as an unreplicated design based on the averages from the three 

repeated measurements per run removed all significances. 

3.3.3 Randomization restrictions and sources of variation: blocks and split-plots 
Blocking is a way to safeguard against bias in estimated effects from suspected known influences; 

these could be the day of experimentation or the experimentation team, a batch of material, etc. 

Whenever these cannot be kept constant (are not large enough for the complete experiment), one 

should account for their presence by including a factor for them. For the occupant classification 

example, blocks for two days of experimentation could be implemented as follows:  

FrF2(32,6, factor.names=list(Foam=c("soft","hard"), 
Bolster=c("soft","stiff"), Aged=c("new","aged"),  

D=c("-","+"),E=c("-","+"),F=c("-","+")),  
seed=27865, blocks=2, block.name="Day" ) 

(6) 

The package suite currently implements blocked designs for regular (fractional) factorial 2-level 

designs, full factorial designs and D-optimal designs. For other factorial designs, blocking can be 

implemented by including a block factor as one of the experimental factors. Alternatively, any design 

in n runs can be blocked into b blocks by crossing by conducting the following steps:  

• Cross the design with a block factor at b levels (e.g. using function cross.design from 

package DoE.base); this leads to a crossed design in nb runs.  

• Use the crossed design from the previous step as the candidate design for D-optimization, 

requesting a design in n runs with estimability of the block factor main effect and all 
experimental effects of interest (function optFederov from package AlgDesign or function 
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Dopt.design from package DoE.wrapper). For achieving perfect orthogonality of blocks 

to experimental factors, it may be necessary to fiddle with optimization parameters. 

Analysis of a blocked design can simply include the block factor as a factor with fixed effects. In case 

of many blocks, it may be more appropriate to treat the block factor as a factor with random effects. 

Split-plotting is more complex than blocking – here, there are also two levels of units, whole 

plots (corresponding to blocks) and sub plots (corresponding to units within blocks). The difference to 

blocking is that there are some factors which change only at the whole plot level. These are called 

whole plot factors, while factors randomized within sub plots are called split plot factors. For all 

whole plot effects and all those split plot effects confounded with whole plot effects, there is less 

information in the experiment than for the other effects. The reason for this is analogous to the 

difference between replications and repeated measurements (cf. previous sub section): effects that 

only change between whole plots share the random setup error associated with setting up whole plot 

factors, while this error cancels out for split-plot effects. Within the package suite presented here, 

split-plotting is directly implemented for regular fractional factorial designs only (cf. example below). 
Indirectly, function param.design for Taguchi-style robustness experiments also produces a 

design that is usually conducted as a split-plot experiment: often all runs of the outer array are 

conducted together for the same run of the inner array, which is also implied by the randomization 
process; if this is not intended, one should use function cross.design for creating a fully 

randomized crossed design.  

For a split-plot creation example, imagine (completely fictitious and probably unrealistic) that 
the change of factor levels for Foam, Bolster and Aged in the occupant classification example 

involves full rebuilds, while level changes are easier for the other factors. Further assume that the 

experiment is considered infeasible if the full rebuild has to be conducted too often. In that case, it 

would be appropriate to conduct the experiment as a split-plot design. If we decide on eight whole 

plots, the whole plot portion of the experiment can be a full factorial. The experiment can then be 

constructed by the command  

FrF2(32,6, factor.names=list(Foam=c("soft","hard"), 
Bolster=c("soft","stiff"), Aged=c("new","aged"),  

 D=c("-","+"),E=c("-","+"),F=c("-","+")),  
seed=27865, WPs=8, nfac.WP=3) 

(7) 

A proper analysis of split-plot designs requires a random effect for the whole plots. Effects plots like 

half normal plots have to treat whole plot and split-plot effects differently. The current default Daniel 

plot for split-plot designs at least shows whole-plot and split-plot effects in different symbols and 

displays an explanatory message; it also provides an output file that allows subsequent separate 
plotting, if this appears necessary. Likewise, the default method of function lm for class design 

carries out a conventional linear model analysis for split-plot designs, but indicates, which effects are 

whole plot effects and warns against possibly misleading p-values for these. If the setup of whole plot 

factors does not involve relevant variability in comparison to measurement error variability, a 

standard analysis of variance without an extra random effect for whole plots will work reasonably 

well, from a practical point of view. However, if there is substantial build variability between whole 

plots  
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Figure 4: Dialogue for function FrF2, simple (top) and expert (bottom) version 
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(as reported for the example experiment in Section 3.3.2), standard analyses from split-plot designs 

can be quite misleading.  

3.3.4 GUI for inexperienced users and experts 
The graphical user interface is supposed to serve users who prefer to avoid command line 

programming. Such users can be experts or novices in Design of Experiments, and both groups should 

be served by the GUI. DoE novices should not be confronted with too much information at a time. 

Therefore, dialogs should not be too crowded. DoE experts, on the other hand, are frustrated, if they 

cannot access advanced functionality. The GUI therefore works with a tick box choice between 

simple (default) and expert version (cf. Figure 4). Furthermore, as it can take quite some time to fill in 

all factor details for a well-annotated version of an experiment, there are also possibilities for storing 

inputs for later use (note that a feature like this has been included into version 1.7-0 of the R 

Commander).  

The GUI offers limited guidance not only on usage but also on statistical content. Figure 5 shows 

the top level menu provided by package RcmdrPlugin.DoE, as well as the “Create design” menu. On 

the top level menu, there is the content help item “Help on Experimental Design …” as well as the 

technical help item “Help on Using the Design Menu …”. Likewise, there are four content help items 

on the “Create design” menu; the corresponding technical help items can be accessed from within the 

various design creation dialogs. 

 

 
Figure 5: Menus from RcmdrPlugin.DoE 
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4 Selected mathematical aspects 

4.1 Usage of design catalogues 

A software of experimental designs can either construct the designs algorithmically from user inputs 

(like, e.g., R packages AlgDesign, Wheeler 2004-2010, or conf.design, Venables 2000-2010) or rely 

on implemented catalogues of designs, or do a combination of both. R packages DoE.base and FrF2 

use catalogues for many cases, also involving algorithmic approaches where appropriate. They thus 

make use of the extensive work that has been invested for many years on creation of catalogues of 

non-isomorphic experimental designs.  

For regular fractional factorial 2-level designs, package FrF2 uses complete catalogues of non-

isomorphic designs by Chen, Sun and Wu (1993) and Xu (2009) as well as further catalogues of large 

designs by Block and Mee (2005) and Sanchez and Sanchez (2005). For nonregular fractional 
factorial 2-level designs (function pb), the package uses published individual designs (Plackett and 

Burman 1946; Hedayat, Sloane and Stufken 1999, Box and Tyssedal 2001). In the large catalogue of 

regular fractional factorial designs in package FrF2, the non-isomorphic designs of the same number 

of runs and factors are ordered from best to worst in terms of minimum aberration – thus, a search 

from beginning to end that takes the first hit always finds the best possible design. Usage of the 

catalogued design by an algorithm to find the best design for particular estimability requirements is 
discussed in the next sub section. Function FrF2 uses algorithms to obtain block and split-plot 

designs with required properties from the catalogued designs. 

Package DoE.base implements some well-known Taguchi mixed level orthogonal arrays and 

some large non-regular fractional factorial 2-level designs of resolution V found e.g. in Mee (2009). 

Furthermore, it provides the parent and child designs of the orthogonal array collection by Kuhfeld 

(2010, based on contributions by many others), for more general mixed level orthogonal arrays. Usage 
of catalogued designs in package DoE.base (function oa.design) is far less advanced than that of 

function FrF2. The available catalogue is by no means complete, and complete catalogues are very 

large and thus intractable under normal usage conditions. Even a search within the available smaller 

incomplete catalogue is non-trivial. Grömping (2011) discusses an approach at coming to grips with 

ranking mixed level arrays in terms of their usefulness for screening experiments. The approach is 

based on the seminal work on generalized minimum aberration by Xu and Wu (2001) and derivations 

thereof. Part of this experimental work is implemented in the package, but currently only works for 

moderately sized designs.  

4.2 Estimable two-factor interactions  

In many applications of regular fractional factorial 2-level designs, researchers have an idea about 

which 2-factor interactions they are interested in. Sometimes, they are also confident that these are the 

only active 2-factor interactions. This situation is catered for by many software products, usually by 

creating a D-optimal design for the requested model in terms of main effects and 2-factor interactions. 

The result will be a regular fractional factorial design for which all effects of interest are on distinct 

columns of the model matrix (therefore, called a distinct design in Grömping 2010a). Often, however, 

an interest in some particular interactions does not imply a conviction that other 2-factor interactions 

are absent. Assuming negligibility of interactions of order higher than 2, this leads to the request of a 
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clear design, i.e. a design for which the main effects and the 2-factor interactions of interest are clear 

of aliasing with each other and also with any other 2-factor interaction. There are a few software 

products that cater for this need, the author is aware of SAS/QC® (SAS® Institute Inc 2009) and 

StatisticaTM (Statsoft Inc 2009) software, apart from R package FrF2. In FrF2, this task is addressed 

by a graph-based algorithm which is detailed in Grömping (2010b); package igraph (Csardi and 
Nepusz 2006) has been instrumental for the implementation. For up to 64 runs, function FrF2 is 

guaranteed to find the best possible clear design and has been found to sometimes outperform the 

competition (cf. Grömping 2010a): for example, the smallest design for 10 factors requesting all 

interactions among the first five factors to be clear has neither been found by PROC FACTEX 

(SAS/QC®) nor by StatisticaTM. This design is a 64 run design based on the catalogued design with 
the ID number 10-4.3 and can be obtained from function FrF2 by the command 

FrF2(nruns=64, nfactors=10, estimable=c("AB", "AC", "AD", 
"AE", "BC", "BD", "BE", "CD", "CE", "DE")) (8) 

Trying the command with nruns=32 will prove that 32 runs won’t be sufficient. 

4.3 Hard to change factors 

Section 3.3.3 discussed split-plot designs, assuming for the occupant classification example that the 

first three factors of the experiment should not change too often. If the desire to keep changes low is 

even stronger than that, and hierarchically so that the first factor is the most difficult to change, the 

second the second most difficult and the third the third most difficult, with strong economic pressure 

to keep changes to a minimum, even a design with eight whole plots created by the code (7) (with 

three, four and five changes for first, second and third factor) may be too demanding. For such cases, 
it may be useful to force even fewer changes. This is possible using option hard, which gives the 

number of factors hard to change (the first hard factors): 

FrF2(32,6, factor.names=list(Foam=c("soft","hard"), 
Bolster=c("soft","stiff"), Aged=c("new","aged"),  

D=c("-","+"),E=c("-","+"),F=c("-","+")),  
seed=27865, hard=3, check.hard=1) 

(9) 

Option check.hard gives the number of structurally different designs to be tried for getting better 

in terms of reduction of level changes. Setting this to “1” makes sure that no deterioration of 
resolution or aberration is accepted. Option hard causes the design to become a split-plot design, but 

without randomization of the whole plot factors; furthermore, the design is based on the slow-
changing matrix according to Cheng, Martin and Tang (1998). For the example, factor Foam changes 

once, factor Bolster twice, and factor Aged four times. Of course, conducting the design with 

these few changes bears substantial risk: if there is relevant variation involved in these changes, the 

factors with fewer changes are substantially more variable than the other factors; furthermore, 

protection against unknown influences related to run order is insufficient. The package documentation 

warns the user; nevertheless, I have decided to offer this featured, because I consider it preferable that 

this facility is deliberately used and documented rather than run order fiddled with by users in case of 

urgent economic pressure to save experimental effort.  
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5 Final remarks 
A lot of further research and development on the package suite would be of interest: 

• quality of block and split-plot designs generated by the algorithm could be systematically 

researched vs. quality of analogous designs created by other software or catalogued designs 
• mixture designs could be implemented, e.g. by incorporating function gen.mixture from 

package AlgDesign (Wheeler 2004-2010) or mixDesign from package qualityTools (Roth 

2010-2011) 

• a facility like the SAS® macros for market research by Kuhfeld (2010), which generates all 

kinds of intricate designs from orthogonal arrays available in package DoE.base could be 

attempted (very much effort) 

• default analysis facilities could become more intricate, e.g. for split-plot designs 

• the GUI package could cover more features, e.g. split-plot designs 

• testing for the GUI package could be progressed more aggressively 

• internationalization of the package suite is desired (but must not start too early in order to 

avoid double work) 

• user guidance for when to use which method could be systematically provided, in terms of a 

simple expert system – probably very demanding  

• …  

Everybody can contribute by reporting bugs and wishes. Any volunteer who wants to take on a larger 

task than that is more than welcome.  

The packages exist in an R environment that continues to grow and change. Many changes are 

positive, some are threatening. As an example for the latter, take Bob Wheeler’s package AlgDesign: 

Bob is now almost 80 years old and would not mind to see this package (like probably some of his 

other packages) transfer into other capable hands. It is perhaps not a very rewarding task to take over 

maintenance of a package that someone else has programmed; it would, however, be very useful. The 

R community will have to find ways to guarantee continuity of important packages, because 

otherwise, the work of many people will be affected. For DoE, AlgDesign is such an important 

package. Therefore, a volunteer for taking over from Bob would be very welcome. 
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Estimation of the optimal design of a nonlinear parametric
regression problem via Monte Carlo experiments

Ida Hertel∗, Michael Kohler

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany.

Abstract: A Monte Carlo method for estimation of the optimal design of a nonlinear
parametric regression problem is presented. The basic idea is to produce via Monte
Carlo values of the error of a parametric regression estimate for randomly chosen
designs and randomly chosen parameters and to use nonparametric regression to
estimate from this data the design for which the maximal error with respect to all
possible parameter values is minimal. A theoretical result concerning consistency of
this estimate of the optimal design is presented.

Keywords: Optimal design, nonparametric regression, consistency.

1 Introduction

Fatigue behaviour of materials can be described, e.g., by curves relating strain amplitudes and
number of cycles till failure to each other. In corresponding experiments, for a given strain
amplitude the number of cycles till failure is observed which is rather time consuming since
usually strain amplitudes are used in such a region that the corresponding number of cycles
achieves values up to 106. For an efficient estimation of such curves it is necessary to choose the
used strain amplitudes (usually between 10 and 15 for one material) carefully.

Mathematically, this can be considered as a problem of determing the optimal design of a
fixed design regression problem. A parametric model in this context is given by the Manson-
Coffin-Basquin relation (cf., e.g., Basquin (1910), Coffin (1954), Manson (1965) and Mitchell
(1996))

ε =
σf
E
· (2N)b + ε′f · (2N)c, (1)

which describes the dependency of the strain amplitude ε on the number N of cycles till failure.
Here σf , b, ε′f and c are cyclic material properties which characterize the fatigue behaviour of the
material and E is a usually known parameter of the material. Since b and c are less than zero,
the monotone function (??) has a well-defined inverse function, and it is this nonlinear model
for the inverse function which describes the experiment where N is observed for given ε.

In el Dsoki et al. (2011) methods, which allow an estimation of these cyclic material properties
given by (??) via artificial neural networks are presented, where the training data consist of static
parameters deducted through tensile tests and corresponding cyclic parameters.

The purpose of this article is to develop a methodology which can determine values to be
used in a sequence of experiments for the strain amplitudes such that by using the observed
numbers till failure the above model can be estimated efficiently.

We assume that we are interested in estimation of a function rp, where p ∈ P is some unknown
parameter from a given set of parameters P. To do this, we have to choose for fixed N ∈ N a
design

z = (z(1), . . . , z(N)) ∈ DN

consisting of points z(i) from some given set D of possible design points. For this design we
generate a data set

DN (z; p) ,
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which we use to calculate an estimate

r̂N (·,DN (z; p))

of rp. Its error is denoted by
Err (r̂N (·,DN (z; p)) , rp)

with expected value
E {Err (r̂N (·,DN (z; p)) , rp)} , (2)

where the expectation is computed with respect to the data set DN (z; p).
Our aim is to choose the design z = (z(1), . . . , z(N)) ∈ DN such that the maximal expected

error
max
p∈P

E {Err (r̂N (·,DN (z; p)) , rp)}

is as small as possible, i.e., we want to find a design z = (z(1), . . . , z(N)) ∈ DN such that

max
p∈P

E {Err (r̂N (·,DN (z; p)) , rp)} ≈ inf
u∈DN

max
p∈P

E {Err (r̂N (·,DN (u; p)) , rp)} .

Our main result is that under some regularity conditions our estimated design is consistent in
the sense that for this design the expected error indeed converges to the minimal possible value
provided the sample size of the data used in estimation of this design converges to infinity.

1.1 Outline

The precise definition of the estimate is given in Section 2 and the main result is formulated in
Section 3.

2 Definition of the estimate of the optimal design

In the sequel we assume that we have given the number N ∈ N of design points, a compact set
D ⊆ Rdz from which we have to choose the design points, and a compact set P ⊆ Rdp of possible
parameters, where for each p ∈ P a function rp is given, which has to be estimated. For a given
design z ∈ DN and a given parameter p ∈ P we can compute a data set DN (z; p), an estimate

r̂N (·,DN (z; p))

of rp and its error
Err (r̂N (·,DN (z; p)), rp) ≥ 0.

Throughout this we make the following assumption:

(A1) The nonnegative function

(z, p) 7→ Err (r̂N (·,DN (z; p)), rp)

defined on DN × P ⊆ Rdz ·N × Rdp is measurable with respect to the Borel sigma-algebra.

In order to find the optimal design, for which the maximal (in view of the parameter) expected
error is minimal, we choose in a first step n ∈ N and random design points Z1, . . . , Zn ∈ DN and
random parameters P1, . . . , Pn ∈ P. Here we assume that

(A2) Z1, . . . , Zn are uniformly distributed on DN ,
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(A3) P1, . . . , Pn are uniformly distributed on P,

(A4) Z1, P1, . . . , Zn, Pn are independent,

(A5) Z1, P1, . . . , Zn, Pn are independent from the data DN (z; p) for all z ∈ DN and p ∈ P.
In a second step we construct for each Xi = (Zi, Pi) data sets

DN (Xi) = DN (Zi;Pi)

where for values zi = Zi(ω) and pi = Pi(ω) of Zi and Pi the data set DN (Zi;Pi) is given by
DN (z; p). Then we use this data set to compute r̂N (·,DN (Xi)) and denote its error by

Yi = Err (r̂N (·,DN (Xi)), rPi) = Err (r̂N (·,DN ((Zi;Pi))), rPi) .

In a third step we use nonparametric regression to estimate for x = (z, p) ∈ DN × P

m(x) := m(z, p) := E {Err (r̂N (·,DN ((z; p))), rp)} . (3)

Because of (A1) and (A5) the above term can be written as conditional expectation via

m(x) = m(z, p) = E {Y1|(Z1, P1) = (z, p)} = E {Y1|X1 = x} .

To estimate m, we apply methods from nonparametric regression (cf., e.g., Györfi et al. (2002)).
We use the data

(X1, Y1), . . . , (Xn, Yn)

to compute the so-called Nadaraya-Watson kernel regression estimate (cf., Nadaraya (1964) and
Watson (1964)).

mn(x) =

∑n
i=1 Yi ·K

(
x−Xi

ĥx

)

∑n
j=1K

(
x−Xj

ĥx

) .

Here K : RN ·dz+dp → R is a so-called kernel function (e.g., K(u) = 1S1(0), where Sr(z) denotes
the (closed) ball of radius r around z in a Euclidean space) and ĥx is the bandwidth of the
kernel. We define the latter one depending on x and the data in such a way that the ball around
x with the radius given as the bandwidth contains at least a special number of data points. More
precisely, we choose r, hn > 0 and set

ĥx = min

{
h ≥ hn : µn(Sr·h) ≥

log n

n1/4

}
,

where

µn(A) =
1

n

n∑

i=1

1A(Xi)

is the empirical measure of A ⊆ RN ·dz+dp corresponding to X1, . . . , Xn.
With the notation introduced above we can reformulate the aim of our procedure in the

following way: Our goal is to find a design (ẑ1, . . . , ẑN ) ∈ DN such that

max
p∈P

m ((ẑ1, . . . , ẑN ) , p) ≈ inf
(z1,...,zN )∈DN

max
p∈P

m ((z1, . . . , zN ) , p) .

In the fourth and last step we define our estimate of the optimal design by
(
ẑ(1), . . . , ẑ(N)

)
= arg min

(û(1),...,û(N))∈DN
max
p∈P

mn

(((
û(1), . . . , û(N)

)
, p
))

.
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3 Main result

Our main result is the following theorem.

Theorem 1 Assume that D ⊆ Rdz and P ⊆ Rdp are compact sets, that the data is generated
as in Section 2 and that the estimate is defined as in Section 2. Assume furthermore that (A1),
. . . , (A5) hold, that m defined by (??) is continuous, and that for some L > 0 we have with
probability one

0 ≤ Err(r̂N (·,DN (z; p)), rp) ≤ L (4)

for all z ∈ DN and p ∈ P. Let K̃ : R+ → R+ be a monotonically decreasing and left continuous
function satisfying for some R > 0

K̃ (+0) > 0 and K̃(t) = 0 for t > R,

and define the kernel K : Rd → R+ by

K (u) = K̃ (‖u‖) (u ∈ Rd).

Let r > 0 be such that K̃(r) > 0 and let the bandwidth ĥx be defined as in Section 2 for some
hn > 0, n ∈ N satisfying

hn → 0 (n→∞).

Then with probability one

max
p∈P

m ((ẑ1, . . . , ẑN ) , p)→ inf
(z1,...,zN )∈DN

max
p∈P

m ((z1, . . . , zN ) , p)

as n tends to infinity.
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A Study on 3-Level Full Factorial Design with 2 Factors
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Abstract: Increasing number of cars and the growth in soil contamination have
left scientists to diminish the reasons for that. The Applied Research Centre for
Environmental Problems in Eskişehir has focused on soil contamination with two
potential reasons (car, tramway) which might be the factors of soil contamination.
Regarding to this, evaluation of the significance of a number of parameters and their
interactions, as well as an obtained simple relationship which defines the response as
a function of the significant factors and interactions are of interest have been taken
into consideration. Three heavy metals (Cd, Zn, Pb) were recorded as pollutants and
a 32 factorial design of experiment is considered to study the important factors, their
levels and interactions between factors affecting soil contamination. In our investi-
gation, the number of experiments is 45 with 5 times replications and 9 treatment
combinations. The response surface plots of each pollutant and canonical analyses
were given and interpreted in details.

Keywords: 32 Factorial experiments, Response surface, Heavy metals.

1 Introduction

Response surface methodology (RSM) comprises a group of statistical techniques such as sta-
tistical experimental design, regression modeling or optimization methods, for empirical model
building and model exploitation (Box and Draper (2007)). It is usually refered to a process of
identifying and fitting an appropriate response surface model from experimental data. Hiller
and Hunter (1966) used RSM in modeling and optimization. Box and Draper (1986) worked an
optimal design criterion and many studies have revealed on optimal designs as given in Khuri
and Cornell (1996) and Myers and Montgomery (2002). Govaerts and Noel (2005) discussed the
analysis of a designed experiment when the response is a curve, specifically the three different
approaches: two-step nonlinear modeling, pointwise functional regression, and smoothed func-
tional regression.
Concepts and techniques of RSM have been extensively used in application of engineering, espe-
cially in the chemical and manufactoring areas. The pollution studies are conducted in this field
to partially contain pollutants so that higher than ambient levels of the pollutant gases can be
maintained. The purpose of this paper is to evaluate the effects of the Cd, Zn and Pb contami-
nation using a 32 full factorial design and to locate the stations where high level of tramway and
car occur using the information obtained by the response surface models.

2 Material and methods

In this study, over the workspace in Eskişehir urban soils which were collected at some locations
where high density of buildings, roads and tramways occur. Sample points within topsoil layers
0-10 cm were located at roads alongside. The coordinates of the sample locations were recorded
with a GPS. All soil samples were dried for 3 h at 105oC (to a constant weight), milled and passed
through a nylon sieve (0.5mm). 0.5 g samples were weighed and transferred into reaction vessels.
The soil contamination data were obtained from the different tramway stations in Eskişehir and
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consist of 45 observations collected from 9 different sample points: Opera, Çarşı, OGÜ, AHS,
Atatürk Avenue-Çilek, AlanÖnü, Bağlar, Vişnelik, and Doktorlar. Based on 32 full factorial
design with 5 replications, a total of 45 tests were carried out. The range of each parameter
is set at three different levels, namely low, medium and high. Tramway denotes the factor x1
and car denotes the factor x2. Portions of the soil samples which were hold approximately 25gr
were grounded in a mechanical agate grinder until fine particles (< 200µm) were obtained. The
number of tramway and car at low, medium and high levels were given in Table 1.

Table 1: Factors, Low, Medium and High Values
x1 x2

Tramway Car
12(-1) 174(-1)
18(0) 852(0)

24(+1) 1530(+1)

The levels of each factor were denoted by (-1), (0), and (+1) due to a computational ease.
Each of the three levels of the two factors was run in all combinations for Cd, Zn and Pb.

3 Theory

RSM assumes a few number of factors are related to each other. In this study, it is assumed
that some true physical relationships between the expectation of the response y and two factors
(ζ1 and ζ2) and via physical constants λ exist. Once the important factors are investigated, next
is to determine the level of these factors that affect the response in someway. In our study the
surface that interested is represented by Eq. (1):

E(y) = f(ζ1, ζ2, λ) (1)

The nature of this expectation function is unknown so that it is replaced by an approximating
function as it is supposed in Eq. (2,3). Here, each Xi is a line coding of a factor ζi and Xi’ s could
be any functions, Xi = f(ζ1, ζ2) , i=1,2,..., of some or all of the factors which are appropriate(
Box and Draper (2007)). As the shape of the response surface is unknown, RSM relates to a
model which can be a first-order, second-order or higher-order with k input variables and can be
formulated, respectively as

Y = β0 + β1X1 + β2X2 + ...+ βkXk + ε (2)

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βiiX
2
i +

∑

i<j

n∑

j=1

βijXiXj + ε (3)

Here, Y is the response, X1, X2, ..., Xk are the known explanatory variables could be used to
express the response, β0, β1, ..., βk, β11, ..., βkk are unknown parameters and ε is a random error.
The higher-order model is upgraded by adding higher-order terms into Eq. (2). If the response
is modeled by a linear function then Eq. (2) is taken into consideration, otherwise there is a
curvature in the system then a polynomial or higher order should be used as given in Eq. (3).

In RSM canonical analysis is performed to determine the location and the nature of the
stationary point of the second-order model. Canonical analysis of the second degree response

Optimal Design of Experiments – Theory and Application, Vienna 2011

65



surface allows the investigation of the underlying nature of the response surface and whether it is
a maximum, minimum, saddle, rising ridge, or stationary ridge (Myers and Montgomery (2002)).

4 Results

In this section, our approach is to develop response surfaces to characterize the contamination
for Cd, Zn and Pb. The results of the analysis of variance on metal contaminations using 32

factorial designs are given in tables for Cd, Zn and Pb, respectively. It is used to examine the
variation in heavy metals with respect to the number of tramways and cars. Moreover, R 2.13.0
Software is used to make a detailed information related to the structure of the variation in main
and interaction effect and those are divided into linear and quadratic terms (R Development
Core Team (2011)). We demonstrate the 3-D surface plots of the estimated response surfaces for
each heavy metal as well.

4.1 The analysis of variance

The significance of independent variables and their interactions are examined by means of the
analysis of variance (ANOVA). A p level of 0.05 was used to determine the statistical significance
in all analyses. Results are assessed with various descriptive statistics such as p value, F value,
degrees of freedom (df), sum of squares (SS), mean sum of squares (MS) in Table 2.

Table 2: Decomposition for Cd contamination
df SS MS F Pr(>F)

x1 2 0.04773 0.02387 3.8792 0.02981 *
x1 1 0.03713 0.03713 6.0349 0.01898 *
x 2
1 1 0.0106 0.0106 1.7235 0.19756
x2 2 0.48709 0.24355 39.5863 8.11E-10 ***
x2 1 0.48503 0.48503 78.8367 1.34E-10 ***
x 2
2 1 0.00207 0.00207 0.3359 0.5658
x1x2 4 1.59105 0.39776 64.6525 6.19E-16 ***
x1 x2 1 0.12002 0.12002 19.5084 8.78E-05 ***
x 2
1 x2 1 1.18105 1.18105 191.9681 5.34E-16 ***
x1 x

2
2 1 0.0015 0.0015 0.2438 0.62447

x 2
1 x

2
2 1 0.28848 0.28848 46.8898 5.20E-08 ***

Residuals 36 0.22148 0.00615
*,***: significant variables

In Table 2, the main effect x1 was statistically significant at the 1% level of probability. The
individual effects of x1 can be examined by 2 terms separately. So that, the linear effect of x1 is
significant at the same level of probability but the quadratic effect stands insignificant in contrary.
In the same way, the factor x2 is statistically significant and it is mostly the reason of the linear
effect of x2 is significant since the quadratic effect is insignificant statistically. Those would
infer that β1 and β2 are nonzero for the corresponding model. In addition to this, the interaction
effect x1x2 is significant that means β12 is in the model. For additional information the linear and
quadratic components of the interaction term on the response are also examined. The individual
effects of the interaction term can be examined by 4 terms separately. According to the results,
the linear effect x1x2 is statistically significant as x21x2 and x21x

2
2 is. The quadratic effect of

x2 and the linear effect of x1 , x1x22 is statistically not significant. Since the interaction term
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is significant fitting a second order model is considered to approximate the surface curvature’s
nature.

The second order response surface model (carrying the estimates to three decimals) are given
in Eq. (4) and the standard error of the model is calculated as S = 0.197.

Ŷ (x) = 0.887 + 0.018x1 + 0.008x2 + 0.06x21 + 0.22x22 + 0.120x1x2 (4)

The canonical analysis is also used to determine the optimum conditions. Since λ1 and λ2
are positive as (λ1, λ2) = (0.240, 0.041) the stationary point is a minimum. The point x0 is
located inside the experimental region since (x0)

′(x0) = 0.081 ≤ 2. The estimated Cd at x0 is
Ŷ0 = 0.887 + (x0)

′β/2 = 0.886. The canonical equation of the Cd surface is given by

Ŷcd = 0.886 + 0.240w1 + 0.041w2 (5)

The magnitutes of λi indicate the height of the surface changes faster when moving along
the w1 axis while along the w2 axis the response increases less rapidly. Eq. (5) reveals that an
increase in estimated Cd occurs upon moving away from the stationary point along the w1 and
w2 axes.

The results of the analysis of variance for Zn contamination using a 32 factorial design are
given in Table 3. It summarizes the main and interaction effects and gives related statistics.

Table 3: Decomposition for Zn contamination
df SS MS F Pr(>F)

x1 2 42554 21277 3024.42 2.20E-16 ***
x1 1 33285 33285 4731.31 2.20E-16 ***
x 2
1 1 9269 9269 1317.53 2.20E-16 ***
x2 2 18368 9184 1305.43 2.20E-16 ***
x2 1 1879 1879 267.13 2.20E-16 ***
x 2
2 1 16488 16488 2343.73 2.20E-16 ***
x1x2 4 11758 2939 417.82 2.20E-16 ***
x1 x2 1 2926 2926 415.86 2.20E-16 ***
x 2
1 x2 1 1635 1635 232.37 2.20E-16 ***
x1 x

2
2 1 5965 5965 847.84 2.20E-16 ***

x 2
1 x

2
2 1 1233 1233 175.23 2.12E-15 ***

Residuals 36 253 7

As seen in Table 3, since all terms are statistically significant and the quadratic model is
highly significant.

The second order response surface model is given in Eq. (6) and the standard error of the
model is calculated as S = 33.51.

Ezn(y) = 112.69 + 17.58x1 − 23.44x2 − 57.69x21 − 13.71x22 + 7.85x1x2 (6)

According to the canonical analysis results, since λ1 and λ2 are positive as (λ1, λ2) =
(−13.361,−58.041) the stationary point is a maximum. The predicted value at stationary point
is 123.235. The canonical equation of the Zn surface is given by

Ŷzn = 123.235− 13.361w1 − 58.041w2 (7)

The point x0 is located inside the experimental region since (x0)
′(x0) ≤ 2. The estimated

Zn at x0 is Ŷ0 = 112.69 + (x0)
′β/2 = 123.235.
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For Pb contamination, the analysis of variance results are given in Table 4.

Table 4: Decomposition for Pb contamination
df SS MS F Pr(>F)

x1 2 9899.3 4949.6 295.727 <2.2e-16 ***
x1 1 681.6 681.6 40.727 2.15E-07 ***
x 2
1 1 9217.6 9217.6 550.728 <2.2e-16 ***
x2 2 8880.6 4440.3 265.297 <2.2e-16 ***
x2 1 6841.3 6841.3 408.747 <2.2e-16 ***
x 2
2 1 2039.4 2039.4 121.847 4.15E-13 ***
x1x2 4 5789.1 1447.3 86.471 <2.2e-16 ***
x1 x2 1 477.9 477.9 28.552 5.24E-06 ***
x 2
1 x2 1 4166.7 4166.7 248.949 <2.2e-16 ***
x1 x

2
2 1 1144.6 1144.6 68.385 7.66E-10 ***

x 2
1 x

2
2 1 0 0 5.85E-07 0.999

Residuals 36 602.5 16.7

According to the results given in Table 4, all terms are statistically significant. The second
order response surface model is shown in Eq. (8) with the corresponding standard error S =
12.80.

Epb(y) = 50.313 + 17.528x1 − 8.244x2 − 8.256x21 − 26.155x22 (8)

The canonical analysis is also applied to Pd data. Since the eigenvalues are positive as
(λ1, λ2) = (−8.256,−26.156) the stationary point is a maximum. The predicted Pb value at
stationary point is 60.267.

The canonical equation of the Pb surface is given by

Ŷpb = 50.313− 8.256w1 − 26.156w2 (9)

The point x0 is located inside the experimental region since (x0)
′(x0) ≤ 2. The estimated

Pb at x0 is Ŷ0 = 50.313 + (x0)
′β/2 = 60.267.

4.2 3-D plot of response surfaces and contour plots

In this section, all plots are generated using package(rsm) (Lenth (2009)). Figure 1a-b indicates
a contour and three dimensional surface plot of the response Cd.

Figure 1: (a) Contour (b) Response surface plot for Cd contamination
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In Figure 1-a contours are drawn whose coordinate axes represent the levels of x1 and x2
and the stationary point of response surface is located at (x1, x2) = (−0.18, 0.03). In Figure 1-b
the response surface shows to be a sink shaped.

In Figure 2-a, the contour plot shows to be a mount shaped. The stationary point of response
surface is at (x1, x2) = (0.096,−0.827).

Figure 2: (a) Contour (b) Response surface plot for Zn contamination

In Figure 3-a, the contour plot shows a maximum point in the surface. The stationary point
for response surface is located at the point (x1, x2) = (−1.06,−0.15).

Figure 3: (a) Contour (b) Response surface plot for Pb contamination

Since one of the main interests of this research is to locate of the stations where the most
contribution on soil contamination occurs, the figures are also interpreted in this way of matter.
Regarding to this, the response surface of Cd contamination shows a minimum point as seen
Figure 1a-b. The minimum point is nearly located at Alanönü station. When moving along the
axes x1 and x2, an increase in response Cd is obtained, especially at Atatürk High School station
for high level of tramway and car and Opera station where low level of tramway and car occur.

As seen in Figure 2a-b, the response surface of Zn contamination has a maximum point. The
highest contribution on soil contamination is located at medium level of tramway and low level
of car where Vişnelik station nearly is. When moving along the axes of x1 and x2, a decrease in
Zn contamination occurs.

For Pb contamination, the peak of the mount shaped surface as seen in Figure 3a-b is
located nearly at Atatürk Avenue-Çilek station where high level of tramway and medium level
of car occur.
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5 Conclusions

This work has demonstrated the use of a 32 full factorial design using the parameters namely,
tramvay and car. The response variables Cd, Zn and Pb are studied effectively with a number
of experiments. The class of second order response model including terms for interaction and
curvature are fitted successfully for each heavy metal contamination. A measure of prediction,
the root mean square error was calculated for each model and summarized in Table 5.

Table 5: RMSE for Cd, Zn and Pb model
Cd model Zn model Pb model

0.197 12.80 33.51

To characterise the response surface, contour plots and canonical analysis are also applied.
Although the pioneering study of co-authors, a nonparametric method so called, multivariate
adaptive regression splines (MARS) has been also successfully used and applied to the same
datasets, it is not mentioned in the context of this paper. For further details about how to
approximate the response surfaces of each heavy metal in a nonparametric way, readers are
couraged to have a look at the previous papers of the authors (Kan and Yazici, 2009a,b).

6 Appendix

6.1 Datasets

Cd=(1.195 0.990 1.195 1.395 0.597 0.990 1.399 0.597 1.395 1.199 0.996 0.597 1.195 0.999 0.996
0.598 1.200 0.990 0.996 0.999 1.198 1.199 1.395 1.200 1.200 1.198 1.198 0.990 1.192 1.395 0.988
1.192 1.192 1.199 0.790 0.990 1.198 0.990 0.996 0.992 1.584 0.993 0.992 0.598 0.996)
zn=( 38.408 134.402 1.200 45.835 132.920 53.586 130.722 1.200 74.030 62.710 1.200 133.610 1.198
73.436 39.403 53.187 39.801 61.711 133.120 62.310 62.773 132.621 47.828 42.057 74.228 52.789
55.500 1.198 137.278 41.658 46.433 121.230 55.300 42.057 72.910 46.337 49.086 41.284 122.222
47.129 74.096 62.972 40.088 48.490 137.478 )
Pb=( 1.200 21.150 76.062 10.514 21.949 11.509 21.749 42.326 41.337 41.342 29.658 16.653 9.732
28.669 41.139 76.062 41.142 9.333 8.737 1.200 1.200 40.942 49.977 16.455 9.933 1.198 1.198 10.728
76.660 28.866 10.713 11.534 11.335 12.288 71.384 46.594 97.391 10.102 24.468 10.132 9.076 48.582
6.898 47.586 25.061 )

6.2 Program code

f.x1=factor(x1)
f.x2=factor(x2)
summary(aov(cd~f.x1+f.x1+f.x1*f.x2),split=list(f.x1=list(L=1,Q=2),f.x2=list(L=1,Q=2)))
library(rsm)
cd.rsm=rsm(cd~SO(x1,x2) )
xs=canonical(cd.rsm)$xs
contour (cd.rsm, ~ x1+x2, image = TRUE,at=xs)
persp(cd.rsm,~x1+x2,at=xs,col=rainbow(50),contours="top")
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Unreplicated fractional factorials, analysis with the half-normal
plot and randomization of the run order

Joachim Kunert∗, Adrian Wilk

Fakultät Statistik, Technische Universität Dortmund, 44221 Dortmund, Germany

Abstract: There is an ongoing discussion whether it is wise to randomize the run
order of a factorial experiment if there is concern about a possible time trend in the
experiment. It can be argued that a randomized order is not very effective because
the trend inflates the error. Some authors even criticize that a randomized order
will normally not be orthogonal to trend, they claim that therefore there will be bias
under the randomized order. On the other hand, a systematic order will only be
useful if the true trend is behaving as is predicted by the model.

The present paper investigates the properties of different run order strategies in a
simulation study with unreplicated factorial designs. We check to which extend the
presence of a time trend might inflate the probability of false rejection of a true null-
hypothesis, and we compare the power of significance tests based on the half-normal
plot under the various run order concepts.

Keywords: Half-Normal Plot, Randomization, Unreplicated factorial designs, Time
trend.

1 Introduction

In the presence of a time trend, the results of an experiment depend on the sequence in which
the runs are being carried out. For example, imagine a situation when there is a monotonous
time trend and assume that for one factor with two levels all runs of the low level are executed
before the runs with the factor at the high level. Then this factor is liable to be declared to have
a significant effect on the response variable, even when in reality the factor is not active. This
is due to the fact that the effect estimator in this case is highly correlated with the time trend.
To avoid such situations, experimenters may want to use an appropriate run order.

Different strategies exist to deal with a possible time trend. Generally, these can be divided
into two basic approaches. Firstly, one might try to avoid a bias due to the time trend, by trying
to find a fixed run order which makes the estimators orthogonal or nearly orthogonal to the
trend. This approach tries to find an efficient analysis and relies heavily on the appropriateness
of some model assumptions. A nice overview of the arguments in favor of a fixed run order is
in Mee and Romanova (2010). The second concept randomizes the order in which the runs are
performed. This approach tries to derive a valid analysis which depends on model assumptions
as little as possible, with the possible disadvantage that the time trend may inflate the variance
of the errors. A recent publication supporting this approach for factorial designs is Adekeye and
Kunert (2006).

There is an ongoing discussion, which of the two concepts should be applied. The fixed run
order is criticized because it might rely too much on model assumptions. If these assumptions
should be wrong in a given situation, then the systematic order might lead to strongly biassed
results. On the other hand, the randomized run order is criticized because it stresses robustness
against model violations too much, at the expense of a possible power loss. Correa et al. (2009)
even doubt that a randomized run order can achieve unbiassed estimates. They claim that only

∗Corresponding author: kunert@statistik.tu-dortmund.de
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a small fraction of the randomized orders will indeed be orthogonal to a trend. We do not
think that this is a valid argument: the correlation with the trend is a random variable under
randomization. A random variable can have expectation zero, even if its probability to be zero
is negligible. However, as pointed out by Adekeye and Kunert (2006), there is, indeed, no proof
that the randomization can validate the assumption that the errors are normally distributed for
saturated factorial designs and the analysis with the half-normal plot.

In the present paper, we use a simulation study to compare the performance of a completely
randomized run order on the one hand with two systematic run order strategies on the other, one
suggested by Cheng and Jacroux (1988) the other by de León Adams et al. (2005) and Correa
et al. (2009). We assume that the experiment is done as a saturated fractional factorial design
with no degrees of freedom for the estimation of the variance. In such a case, the analysis is often
done with the so-called half-normal plot, introduced by Daniel (1959), or variants thereof. We
measure the performance of the run-order strategies by the probability of a false rejection and by
the power. The probability of a false rejection is compared with the nominal level of significance.
The power is quantified by the probability to identify truly active effects as active effects. We
think that any statistical test makes sense only if the probability of a false rejection does not
exceed the nominal level - calculating the power of a test which does not keep the nominal level
is a fruitless exercise.

In our simulations, we introduce various forms of a time trend to see how the trend influences
the performance of the different run-orders. We confine ourselves to analyzing unreplicated
(fractional) factorial designs of length n = 8, n = 16 and n = 32 with a saturated model. All
factors are at two levels and we assume that all interactions are possibly active. However, we
assume that factor sparsity holds, that is, we assume that only a small number of the factors is
truly active. Because there are no degrees of freedom for estimation of the variance, the designs
are analyzed with the half-normal plot. For all run-orders, we use four different proposals to
estimate the error variance and compare these proposals to each other.

The number of runs is denoted by n, the number of contrasts to be estimated in the model
by b. We assume that

yi = µ+

b∑

j=1

xijβj + ei, i ∈ {1, 2, . . . , n},

where yi is the response at run i, xi = [xi1, . . . , xib]
T , with each xij ∈ {0, 1}, is the setting of the

design at run i, β = (µ, β1, . . . , βb)
T is the vector of parameters and ei the ith error term. It is

supposed that the errors are normally distributed with variance τ2. The mean of the error term,
however, is not zero but depends on i, to model a trend.

For the construction of trend resistant designs, it is generally assumed that the trend is linear
in i, at times it is assumed to be quadratic. Adekeye and Kunert (2006) presented data from an
experiment with a real time trend. This trend was neither linear nor quadratic but followed a less
regular pattern. In their paper, Adekeye and Kunert (2006) compared the randomized run order
with the trend-free designs constructed by Cheng and Jacroux (1988), assuming a time series
model for the trend. The present paper continues this work, using linear and quadratic trends.
This might help the reader to quantify how much can be gained by a systematic run order in
ideal situations. Additionally, the present paper also looks at nearly trend-free systematic run
orders, proposed by de León Adams et al. (2005) and Correa et al. (2009).

In each of our simulated designs, a random experiment with values v = 1 and v = −1, each
with probability 1/2, decides on the sign of the trend. We consider linear and quadratic trends.
For linear trends, the ith error term follows a normal distribution with mean v(a · i). Here a
describes the intensity, so ei ∼ N(v(a · i), τ2) with 1 ≤ i ≤ n. In the presence of a quadratic
trend, the error term follows a normal distribution with mean v(c(i − n+1

2 )2 + a · i). Here the
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intensity of the quadratic part of the trend is described by c.
The different concepts of run order are presented in Section 2. Section 3 contains a description

of how half-normal plots can be applied. Finally, Section 4 presents our simulation study.

2 Concepts of run order

In Section 4 we compare three different concepts of run order. In what follows the different
concepts are shortly presented, only for the case that n = 8 and that we have four factors, but
the explanation can be adapted to the other run lengths or numbers of factors.

The designs for all three concepts are constructed by modifying a full factorial design with
the desired number of runs. An example for such a design with 8 runs is given in Table 1. Each
factor of the experiment is then placed on one of the columns of the full factorial design. In
general, it is possible to have up to b = n−1 factors in a fractional factorial design. The columns
left over, which are not used for factors, will be used for the estimation of interactions. We do
not assume that all interactions are negligible. Hence, there will be no degrees of freedom left
for the estimation of the variance.

Table 1: 8-run design with standard run order
Run A B C AB AC BC ABC
1 + + + + + + +
2 + + - + - - -
3 + - + - + - -
4 + - - - - + +
5 - + + - - + -
6 - + - - + - +
7 - - + + - - +
8 - - - + + + -

Random run order
Any experimental design with standard run order can be used as a basis for a design with

a random run order. Each factor is placed on one of the columns. In general, the columns
are selected in such a way that we will have a good resolution of the design. For the design in
Table 1, it should make sense to place factor 1 on the column A, 2 on the column B and 3 on
C, while factor 4 is placed on the column ABC. This gives a resolution IV design, where the
interaction (12) is confounded with (34), (13) is confounded with (24) and (23) is confounded
with (14). After selecting the columns, the runs of the design are randomized, i.e. they are
permuted with permutation Π, where Π is selected strictly at random among all n! possible per-
mutations. The design in Table 2 is derived from Table 1 by one random permutation of the rows.

Systematic run order
Experimental designs in which all columns are orthogonal to a linear time trend are con-

structed in Cheng and Jacroux (1988). With this approach, only a part of the columns of the
design with standard run order can be used. It is not possible to choose a run order where all
columns of a complete factorial design are orthogonal to a linear time trend.

An 8-run design with systematic run order is given in Table 3. The columns of the design
in Table 3 are orthogonal to a linear time trend. This design has only four columns, so three
columns of the design of Table 1 had to be given up. In general with this construction method,
a 2k-design looses k columns. In fact, from the full factorial design in standard run order, the
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Table 2: Example for a 8-run design with randomized run order (RO)
Run 1 2 3 (12) (13) (23) 4
1 + + - + - - -
2 - - + + - - +
3 - + + - - + -
4 + + + + + + +
5 - - - + + + -
6 - + - - + - +
7 + - + - + - -
8 + - - - - + +

columns allocated with main effects have to be deleted. They are kept free and all effects of
interest have to be placed on the remaining columns.

Table 3: 8-run design with systematic run order (SO)
Run 1 2 3 4
1 + + + +
2 + - - -
3 - + - -
4 - - + +
5 - - + -
6 - + - +
7 + - - +
8 + + + -

Run order with minimum bias
We call the third concept "run order with minimum bias". This was introduced by de León Adams

et al. (2005). As opposed to the systematic run order, this concept avoids deleting columns. The
columns are as orthogonal to a linear time trend as possible under the restriction that all columns
are used. For several run lengths, de León Adams et al. (2005) and Correa et al. (2009) have
determined sets of designs, where all columns satisfy the same maximum bias. Furthermore the
number of level changes in the factors is as small as possible. In both papers, the reduction of
the number of level changes is not relevant for the analysis, it is only introduced to make the
experiment easier to carry out. An example is given in Table 4.

Table 4: Example for a 8-run design suggested by de León Adams et al. (2005) (run order with
minimum bias)

Run 1 2 3 12 13 23 4
1 + + + + + + +
2 + + - + - - -
3 - + - - + - +
4 - - - + + + -
5 + - - - - + +
6 + - + - + - -
7 - - + + - - +
8 - + + - - + -
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In what follows, the following abbreviations are used: RO for randomized run order, SO for
systematic run order and MB for run order with minimum bias.

3 Analysis via half-normal plots

For the decision whether an effect is active, an observed test-statistic has to be compared to
a critical value. Since we do not have any degrees of freedom left for the estimation of the
variance, it is not possible to use a t-test. The half-normal plot makes use of the assumption
that most of the effects in the model are zero. Note that the estimators for the not-active effects
have expectation zero and hence their absolute value can be used to estimate the variance.
For a fractional factorial design, all estimators β̂j are uncorrelated and have the same variance
σ2 = τ2/n. Therefore, the sorted absolute values of the estimates β̂j are used for an estimate for
σ. In our simulations, we consider four different proposals and compare them to each other:

• Proposal 1 (Daniel, 1959):
σ̂Q =| β̂ |([0.683b+1]),

• Proposal 2 (Lenth, 1989):

σ̂M =
3

2
(median | β̂j |),

• Proposal 3 (Lenth, 1989):

σ̂PSE =
3

2
( median
|β̂j |≤2.56σ̂M

| β̂j |),

• Proposal 4 (Dong, 1993):

σ̂ASE =

√√√√
1.08

b− z
∑

|β̂j |≤2.56σ̂M

β̂2j .

Here b denotes the number of estimated effects and z is the number of estimates whose absolute
value is less than 2.56σ̂M . Kunert (1997) has shown that σ̂PSE has the smallest bias, but σ̂ASE
has the smallest variance among these estimates.

The half-normal plot then uses the test-statistics

| Tj |=| β̂j/σ̂ |, 1 ≤ j ≤ b,

where σ̂ is one of these four possibilities.
For the determination of the critical values, the distribution of

S := max
j
| Tj |

was simulated by 300,000 iterations in the situation where no effect is active. The distribution of S
depends on the number of estimates and therefore on the number of columns of the experimental
design which can be used. As a consequence, different critical values have to be determined for
the different run order strategies presented in Section 2. In what follows, the critical values used
are the simulated 95%-quantiles of the distributions of S. Some relevant critical values are given
in Table 5. Hence C(b, α) denotes the (1-α)-quantile of the distribution of S in the presence of b
columns. The distributions of the four variants are illustrated for n = 16 with b = 15 in Figure 1.
Finally an example for a half-normal plot is given in Figure 2.
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Table 5: Critical values for statistical tests (95%-quantiles of S)
Runs Factors σ̂Q σ̂M σ̂PSE σ̂ASE
n = 8 b = 7 3.714 3.880 4.831 4.614
n = 16 b = 11 3.365 3.730 4.409 4.016

b = 15 3.232 3.666 4.186 3.810
n = 32 b = 31 3.351 3.585 3.896 3.597

n=16, b=15

max |tj|

pr
ob

ab
ili

ty

p=0.95

σ̂Q

σ̂M
PSE
ASE

0 1 2 3 4 5

0
0.

5
1

Figure 1: Distribution of S under no trend for n = 16 and b = 15. The intersections with
’p=0.95’ lead to critical values for statistical tests.

4 Simulation study

In this section the performances of the three strategies of run order introduced in Section 2 are
investigated in a simulation study.

In a first step, we restrict the analysis to the randomized run order and large linear trends.
We consider the three run lengths 8, 16 and 32. This step is done to determine the robustness
of the randomized run order: Can a randomized run order truly avoid bias due to a time trend?

In the second part of the simulation study, all concepts are researched in the situation of
linear and quadratic trends. Here, we consider only the run length 16. In this part, we will
compare the power loss of the three strategies in the presence of a moderate linear trend and we
will compare the robustness of the three strategies to the presence of non-linear trends.

We use two criteria to evaluate the three strategies. The first one is the probability of false
rejection (PFR):

PFR = P (max
j
| Tj |> C(b, α)).

It gives the proportion of designs where at least one effect is declared as active, although in
reality all effects are not active. This proportion is simulated in the presence of time trends with
different intensities. Hence, PFR determines whether statistical tests keep the nominal level of
significance under the various strategies of run-orders.

The second criterion is the probability of effect detection (PED):

PED = P ( min
j:βj 6=0

| Tj |> C(b, α)).

The probability of effect detection describes the proportion of designs, where all truly active
effects are identified as active.
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Figure 2: Example of a HNP where σ̂Q is used to estimate the error variance. Here effects B and
C would be declared as active.

The simulation study is organized as follows.

Procedure 1: Determination of PFR

(1) RO: Permute the rows of the design with standard run order.
SO: Permute the columns of the design with systematic run order.
MB: Choose at random one design out of the set of feasible designs in the catalog in
de León Adams et al. (2005). Permute the columns of the chosen design.

(2) Create the data by equation yi = ei.

(3) Compute the test statistic max | tj |.

(4) Repeat step 1 to 3, until 100,000 designs have been derived.

(5) For all three strategies and all four variants compute the respective proportion of designs
where the test statistic exceeds the critical value C(b, α). This proportion is an estimation
for the probability of false rejection.

Procedure 2: Determination of PED

(1) RO: Permute the rows of the design with standard run order.
SO: Permute the columns of the design with systematic run order.
MB: Choose at random one design out of the set of feasible designs in the catalog in
de León Adams et al. (2005). Permute the columns of the chosen design.

(2) Create the data by equation yi = µ+
∑b

j=1 xijβj + ei.

(3) Compute the test statistic tj .
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(4) Check whether all active effects are identified as active effects, i.e. | tj |> C(b, α) for all j
with βj 6= 0.

(5) Repeat step 1 to 4, until 100,000 designs have been derived.

(6) Compute for all three strategies and all four variants the respective proportion of designs
where the condition in step 4 is achieved. This proportion is an estimation for the proba-
bility of effect detection.

Note that the columns are randomized for two of the strategies. The reason is that, in general,
the correlation between the columns and the trend varies between the columns.

The first part of the simulation only deals with the randomized run order, with run lengths
n = 8, n = 16 and n = 32. It only considers the scenario that there are no active factors and
there is a large linear trend. The distribution of the largest contrast in the presence of the trend
is then compared to the distribution that we have already derived under normally distributed
errors in Section 3.

The observations in the presence of a large linear trend are simulated in the following way.
The variance of the error is set equal to zero. Furthermore no effect is active and the size of
the trend, a, is set to 1. Note that a can be chosen arbitrarily, because the trend is a linear
component in numerator and denominator of the test statistic. This corresponds to the limiting
case that the error variance is arbitrary and the trend converges to infinity. It should be the
worst case for the randomized order in the presence of a time trend, because the bias according
to de León Adams et al. (2005) then converges to infinity. As the nominal level is set to 5%, the
proportion of designs that leads to a false rejection of the null hypothesis should be five percent.
However, we observe for the small design with n = 8, in the presence of a large trend, that the
largest contrast gets declared active in at least 13 percent of the cases, see Table 6. This result is
also demonstrated in Figure 3 where the distribution under ideal conditions and the distribution
under trend are plotted together. Obviously, the distribution under the large trend is discrete,
it is far from the continuous distribution derived under normality. Hence, the randomized order
does not guarantee keeping the nominal level in the presence of a linear trend for factorial designs
of size 8! (This was already observed by Adekeye and Kunert (2006).)

Fortunately, this problem disappears for larger designs, when the two distributions become
much more similar, see Figures 4 and 5. Here, the nominal levels are only minimally exceeded,
with PFR equal to 7.6% in the maximum, see Table 6.

This indicates that, if we do an analysis with the half-normal plot, then randomization of
the run-order does indeed help keeping the nominal level in the presence of a linear time trend -
provided we have 16 runs or more.

Table 6: PFR of randomized run orders, strong linear trend, α = 0.05
Runs Factors σ̂Q σ̂M σ̂PSE σ̂ASE
n=8 b=7 0.165 0.199 0.135 0.133
n=16 b=15 0.076 0.072 0.062 0.075
n=32 b=31 0.063 0.063 0.061 0.065

In the second part of the study, we consider all three design strategies, but we restrict to the
case of a 16 run design. For this case, we simulate various scenarios. The first scenario assumes
that there is no active effect and tries to simulate a moderate time trend.
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Figure 3: Distribution of max | Tj | (n = 8, randomized run order, no active effects): Comparison
of the distribution when i) there is no trend (a = 0) to the distribution when ii) the trend becomes
infinitely large (a 6= 0).

We make use of the fact that, if a variable Z is standard normal, Z ∼ N(0, 1), then

E(| Z |) =

√
2

π
.

If there is no trend and there are no active factors, then we will have for Y1 − Yn, the difference
between the first and the last observation, that Y1 − Yn ∼ N(0, 2σ2). Hence,

E(| Y1 − Yn |) =
√

2σ

√
2

π
=

√
4

π
σ.

This implies for our simulations that, if we set σ = 1 and the trend intensity a equal to a = 1
15

√
4
π ,

then the expected difference between the first and 16th observation caused by the trend will be
just as large as the expected difference caused by the random noise.

In this scenario, we observe that all three concepts appear to perform well, the nominal levels
are approximately kept, see Table 7.

These results show that for all three design strategies a moderate linear trend does not destroy
the nominal level of the half normal plot, if the design is large enough. Thus, all three strategies
appear to provide valid tests in the presence of a linear trend.

In the next scenarios we compare the power of the concepts. In these settings we assume
that the response of the 16-run design is influenced by one active effect of size β1 = 1. When
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Figure 4: Distribution of max | Tj | (n = 16, randomized run order, no active effects): Compar-
ison of the distribution when i) there is no trend (a = 0) to the distribution when ii) the trend
becomes infinitely large (a 6= 0).

Table 7: PFR of all concepts, linear trend (moderate), α = 0.05, n=16
RO SO MB

no trend 0.05 0.05 0.05
linear trend 0.05 0.05 0.05

we then simulate the moderate trend as before, it appears that all concepts perform similarly.
The power of the randomized order is only slightly smaller. It should be noted, however, that
the trend-free run order has a slightly lower power in a further scenario, where we assume that
the trend is not present. This is due to the fact that the trend-free run order can only use a
smaller number of columns. On the other hand, when we simulated the trend as large, then both
the randomized run order and the run order with minimum bias experienced a dramatic loss of
power, see Table 8.

As an aside, when comparing the four estimates of the variance for any given design, then in
general the estimators σ̂Q and σ̂ASE lead to the highest power.

In our last scenario, we consider a quadratic trend instead of the linear one. For this scenario,
the trend parameters are set to a = 0 and c = 0.1. Here we observe that only the randomized
run order is able to provide a valid test that keeps the nominal level, see Table 9.

Hence, we derive from our simulations the following message: The two systematic run orders
considered here, have the problem that they only work properly if the trend is truly linear. In the
presence of a non-linear trend, they may fail dramatically. The randomized run order appears
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Figure 5: Distribution of max | Tj | (n = 32, randomized run order, no active effects): Compar-
ison of the distribution when i) there is no trend (a = 0) to the distribution when ii) the trend
becomes infinitely large (a 6= 0).

to provide a valid test; it may, however, loose power if the trend gets too large.
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Table 8: PED of all concepts, linear trend (moderate/large), α = 0.05, n=16
RO SO MB RO SO MB

σ̂Q σ̂M
no trend 0.59 0.55 0.59 0.49 0.46 0.48
linear trend (moderate) 0.52 0.54 0.52 0.42 0.44 0.43
linear trend (large) 0.01 0.55 0.00 0.01 0.44 0.03

σ̂PSE σ̂ASE
no trend 0.44 0.41 0.44 0.58 0.54 0.58
linear trend (moderate) 0.37 0.39 0.39 0.50 0.53 0.52
linear trend (large) 0.01 0.39 0.15 0.01 0.54 0.03

Table 9: PFR of randomized run orders, quadratic trend, α = 0.05, n=16
RO SO MB RO SO MB

σ̂Q σ̂M
quadratic trend 0.06 0.64 0.34 0.06 0.57 0.32

σ̂PSE σ̂ASE
quadratic trend 0.06 0.52 0.33 0.06 0.60 0.36
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Abstract: The generalized dimension is a new notion that appeared about the fractal forms. The 

Hausdorff dimension has been defined into the beginning 20-th century and was one from the 

novelty entities from the modern geometry named fractal geometry. This dimension was been 

implied into many interesting area of applications such as medicine, biology, physics, 

engineering etc. Calculus for this is very important in study of the natural complex systems, there 

where the classical mathematical concepts proved limitary in the phenomena description.   

Keywords: fractal, chaos, dimension, geometry, complexity. 

 

1 Introduction 

 
Fractals have practically entered every domain of interest of the human knowledge, becoming, 

from a simple subject of reflection, an interest theme for the uninitiated and for experts alike. From 

the analysis of the climatic phenomenon and  to the modeling of the cancerous phenomenon, from 

the description of the images captured by the Hubble Space Telescope to the use of special effects 

in movies, fractals proved to be an inexhaustible source of ideas, solutions, tries, algorithms, on 

ways and directions either classical or surprisingly nonconventional.  

The fractal approach on the study of cancerous tissues proved to be one of the successful themes 

of the systemic modeling. Thus, the medical diagnosis gained a new valence in the informational 

interpreting of images of the malign tissues, proportionally reducing the need to make a biopsy to 

take a tissue sample. 

A series of fractal characteristics (i.e., specific to the Fourier spectrum of images in grey scale) 

were used by Heymans and his collaborators (S. Blacher, F. Rouers, G.E. Pierard). The fractal 

dimension quantifies here the random level of the vascular distribution also, a characteristic not 

easy to point out through the vascular density. 

An analysis of the fractal dimension from a graphic image is useful, because the fractal 

dimension is a key element in studying the morpho-functional characteristics and the systemic 

behavior of the cancerous tissues. Searching for new methods of defining the generalized 

dimension for complex graphic systems leads to an inter-systemic view at the level of the 

perception of physical properties of the studied entities through the mathematical representation 

models. 

 

2 The fractal dimension 

 
There is a large number of methods that can be used in defining and calculating the fractal 

dimension of a new graphic object, which we’ll call from now on form. 

                                                           
* Corresponding author: mahalu@eed.usv.ro 
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No matter what the definition of the dimension of a fractal form, all ideas are derived from the 

Hausdorff-Besicovich dimension (HB). This dimension is a real number that can be used in 

characterizing the geometrical complexity of a limited subset from
n

R . 

The HB dimension has a more subtle meaning that fractal dimension. One of the reasons as to 

why this notion is so important is that it allows comparing various “values” of sets for which the 

fractal dimension is the same. 

In order to understand the way of defining the HB dimension, let’s take the metric space 

 d,
n

R . Here, n  is a natural number and d  notes the Euclidean metric. Let’s say  
n

RA  is a 

limited domain. We can note: 

 

},:),(sup{)( AyxyxdAdiam      (1) 

 

We have  0 and  p0 . We will note the set of subsets AA
i


 
with   so that
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
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1
. Under these conditions, we can define: 

 

})(}{:))((inf{),,(

1








i

ii

p

i
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We will use the convention that 0))((
0


i
Adiam  when 

i
A  is an empty set. 

We notice that ),,( pAM  is a number included in the  ,0  interval, finite or nonfinite. 

For   ,0p , the value: 

 

 0:),,(sup),(  pAMpAM  

 

is called A’s p-dimensional Hausdorff value or simpler, the Hausdorff dimension. 

We notice that the Hausdorff dimension has a more general character than the Euclidean 

dimension, being able to obtain fractional values, unlike the other one. Due to this fact, we can 

consider it to be at the base of a special class, called the class of generalized dimensions.  We 

mention that the Hausdorff dimension like it was defined before is not the only example that 

belongs to this class (Hambly and Jones 2003). Any other example of fractal dimension also 

belongs to this class.  

The technique used to define the Hausdorff dimension is the one used to cover the domain A 

with a set of subdomains NiA
i
, . This technique allows us to make a deducing reasoning of the 

fractal dimension of self-similar forms (geometrical objects). For this, let’s consider a form with 

the linear magnitude (after all the directions of the Euclidean space) equal with one, whose 

magnitude is reduced to 1q  after every special direction. This way, if the initial form is self-

similar, we get coverage of the form with )( qN  self-similar forms (figure 1). 

Following the data in figure 1, we notice that: 

 
D

qN


       (3) 

 

So that the dimension of the forms is determined after the relation: 

 

q

qN
D

1
log

)(log
       (4) 
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Applying this relation to a self-similar structure, we can find a value even non-integer for D, as 

value for the limit: 

 

q

qN
D

q 1
log

)(log
lim

0

         (5) 

 

The (5) relation has a qualitative level, as it can be used only in numerical algorithms (Restrepo et 

al. 2004). Far more used in practice is the Mandelbrot-Richardson relation (diagram), deduced as a 

consequence of the Richardson effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lewis Fry Richardson is the first one to put the question of a relation between the length of the 

national borders and the measurement scale. He noticed that this is a log-log type of relation (it can 

be represented in a graphic where the scale logarithm is on the abscissa and on the ordinate the 

logarithm of the length of the contour as a scale function). 

Mandelbrot associated the (1 – D) terms with inclination of the graphic, so that the function 

becomes: 

 

ksDsL  )log()1()(log      (6) 

 

Figure 1: Defining the Euclidean topological dimension 
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where D is the fractal dimension, s notes the reference scale, )( sL  is the length of the contour of 

the border or the coast (corresponding to the scale) and k is a positive constant belonging to the 

absolute magnitude of the length of the contour we referred to (Mosekilde et al. 2002).  

Indeed, starting from the (4) relation and considering that:  

 

)()(

0

qNsL

qs

k







 

 

we get: 

 

s

sL
D

1
log

)(log
1       (7) 

  

from where: 

 

sD
s

DsL log)1(
1

log)1()(log     (8) 

 

which justifies the association made by Mandelbrot. 

For the coast of Great Britain, Richardson found: 24.01  D , so 24.1D , meaning a 

fractional value. The coast line in South Africa proved to be more leveled, almost a circular arc. 

The estimated inclination for the Mandelbrot-Richardson diagram is very close to zero, so that we 

have: 1D . Thus it is proven that this contour has the characteristics of a Euclidean geometrical 

form, just like it was expected to have. 

 

3 The analysis of the generalized dimension 

 
We will continue by making a qualitative analysis of the interpretation of a new type of 

geometrical dimension, different from the Euclidean topological one. We will call it generalized 

dimension, its properties being studied subsequently. In order to identify some correlations between 

the generalized dimension and the fractal dimension, the question of studying the existent relations 

between the two notions arises (Baish and Jain 2000).  

Let it be a smooth, continuous curve, like the one in figure 2. In this figure, the Ox axis is the 

axis of the x argument and the Oy axis is the axis of the )( xfy 
 
function. In the particular case 

of the shown example, the function has the form: 3sin(4x)f(x)  . The display window has been 

auto-dimensioned.  

It is obvious that the maximum number of grid points that can be found on the grid is 
2

N , 

where N  is the number of reticles is after each axis.  Not all these points, though, will have this 

property in practice, making this number equal to Nn  , where n  is the average of nods on each 

axis of the grid and simultaneously on the graphic. We will define the nods with this property as 

active nods, whereas the nods without this property will be called passive nods. The points of 

intersection with the graphic which are not found on the cover matrix are ignored (they are 

eliminated from the algorithm that determines the generalized dimension). We have in the example 

above three passive nods and just one active nod.  

Obviously, the spread between reticular lines is arbitrary. Moreover, because the contour 

graphic must not represent a compulsory according with a function's graphic, the number of 

intersections of a contour chart with one reticle column may be greater than one. At the same time, 
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we will change the intersection points with intersection areas and then make a switch to limit zero 

for the area. In this sense, the algorithm has a routine of creating these areas. 

  

 

We will consider that the weight of n’s value in reference to N can vary between 0 and 1, these 

limits realizing, formally speaking, the all or nothing membership function. In other words, n can 

take values between 0 and N. If by modifying N’s value, this characteristic remains unchanged, 

then this is a specificity of the considered curve. Thus, we can proceed to determine the generalized 

dimension as a specificity index.  We notice that the 
N

n
 ratio indicates a space factor (or an 

overlap factor) with active nods (nods situated on the graphic). Due to this fact, the method used to 

define the generalized dimension will be called the cover matrix method (CMM).  

To define the generalized dimension, the following formula is adopted: 

 

   
D

k
Nn

N 




1
                       (9) 

 

where n and N are notions which we previously talked about, k is an arbitrary constant and the 

generalized dimension is noted with D.  

Let us notice that, in order to norm the variation interval of the generalized dimension, we must 

chose k = 2. Truthfully, to look up the logarithm of both members from relation (9) and to choose 

the base of the logarithm with a value of 2, we get: 

 

  
N

Nn
D




2
log1      (10) 

 

Let us analyze relation (10). For very low values of n in reference to N, meaning for 0n , we 

have 1D . This fact suggests that a curve with such a characteristic is an ordinary, Euclidean 

curve. When Nn  , though, the filling of the above mentioned domain tends to be complete and 

relation (10) leads to 2D , indicating that the curve becomes now a special curve, with 

characteristics similar to those of a surface. In conclusion, the domain of variation of the 

generalized dimension is  2,1 , the same as the variation domain of the corresponding fractal 

dimension.  

x 

f(x) 

Figure 2: Defining the cover matrix 
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In order to adapt the calculus necessities to the facilities offered by the various programming 

software, we will bring relation (10) to the form: 

 

 
2ln

ln

1
N

Nn

D



      (11) 

 

where ln notes the natural or Napierian logarithm function. 

We notice that   Nn ,0 , so that the following relation has meaning: 

 

2ln

)1ln(
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
D      (12) 

 

with  1,0,/   Nn . We will call the  variable space factor and, when needed, we will 

refer to it subsequently. 

We notice that the interval of possible values of the generalized dimension is  2,1 , just as 

wanted. 

Expression (12) can be brought to the form: 

 

SD  1       (13) 

 

where 
2ln

)1ln( 



S  notes the ramp characteristic of the cover matrix method. 

However, considering the dividing method in determining the generalized dimension: 
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and noting with L  the length of the approximated curve, with r the length of the step, and with D 

the generalized dimension, we have (in conformity with relation (9)): 
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In this case also the generalized dimension can be written using the ramp characteristic: 

 

SD  1       (16) 

  

We notice that while r’s value in the dividing method is constant all through and iteration, in the 

case of cover matrix method, this value is a mean that takes the form: 

 






n

i

i

n
r

1

1
       (17) 

 

where 
i

  is the width step from nod i  to nod i + 1. 

According to relation (15) and considering the notes made in relation (12), we have: 

 

1

1
log





k

S      (18) 
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For     value of S ranges from -1 to 0 and value of D ranges from 1 to 2. The D expression is 

deducted in conformity with relation (16): 

 

1

1
log11





k

SD     (19) 

 

Thus, the generalized dimension in mixt method, gain expression: 

 

 1log1
2

 D      (20) 

 

The relation (20) is same with relation (12). But, if we use the natural logarithm, relation (20) 

becomes: 

 

 1ln1  D      (21) 

 

In this case D has a variation between   and           . As ramp characteristic S is negative, 

with values between 0 and 69.02ln  , the generalized dimension can take values in the  S1,0

interval. To assure the same domain of affiliation for the generalized dimension like in the case of 

the cover matrix method, we need to renormalize:  

 

 


SD  1       (22) 

 

As for 0S  the value of the   
coefficient can be any number, we will evaluate this for the case 

when 2lnS . 

Figure 3: The Variation of the generalized dimension in relation to the space factor 

(a) MA method   (b) mixt method 

 

D 

(a) 

(b) 
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We have: 

 

33.1
)2ln1ln(

2ln



      (23) 

 

Conclusions 

 
Relations (12) and (22) are calculation formulae of the generalized dimension within the cover 

matrix method (CMM) and the mixt method (MM). An analysis of this relation can signal a series 

of specific characteristics and can suggest some use strategies of the two methods in practical 

applications.  

Comparing relations (12) and (22) indicates that their use leads to similar results, with very 

small deviations into the central area.  

The result provided by the mixed method has the advantage of increased linearity. Both 

formulas computing facilities presents classical box-counting method above.  

The computer program must create an overlap between a grid mesh and the object fractal 

(Armstrong 2010; Voss 2010). Determination of active nodes follows a routine that has been 

discussed previously. 

Careful study indicates that both box-counting method and the two proposed methods leading to 

similar results. Each method is likely to be used practically. 

According to figure 3, we notice that the deviation between the curve defined by the evolution 

of the generalized dimension in the case of the dividing method (the dotted curve) and the one 

specific to the mixt method (the continuous curve) is a small one (under 1%). Consequently, the 

two methods can be considered congruent, practice favoring the use of one or the other. 
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Adaptive Choice of Resampling Tests for Scale in Flexible Two
Stage Designs

Marco Marozzi∗

Dipartimento di Economia e Statistica, Università della Calabria, Via Bucci 0C, 87036 Rende (CS), Italy

Abstract: The two sample scale problem is addressed within the rank framework
which does not require to specify the underlying distribution. However, since the
power of a rank test depends on the underlying distribution, it would be very useful
for the researcher to have some information on it in order to use the possibly most
suitable test. A two stage adaptive design is used with adaptive tests where the data
from the first stage are used to compute a selector statistic to select the test statistic
for stage two. More precisely an adaptive scale test due to Hall and Padmanabhan and
its components are considered in one stage and several adaptive and non adaptive
two stage procedures. A simulation study shows that the two stage test with the
adaptive choice in the second stage and with Liptak combination when it is not more
powerful than the corresponding one stage test shows however a quite similar power
behavior. The tests procedures are illustrated using an ecological application.

Keywords: Resampling Tests, Scale, Flexible Two Stage Designs.

1 Introduction

In classical clinical trials the design features should be established in the protocol before the
start of the study. However, when designing the experiment the available information might
be incomplete leading to a possible misspecification of sample sizes, hypotheses, variability, test
procedures, endpoints... This problem is particularly important when developing a new drug.
Flexible (adaptive) study designs, by using the accumulated data, allow to modify the design
features, if necessary, with the aim at improving the design (Bauer and Köhne (1994)). The
central idea of adaptive designs is to conduct a sequence of experiments and analyze separately
the data from each stage. The design of a stage may be changed according to the results obtained
in the previous stage or stages. For example sample sizes can be adjusted using interim analysis
results on variability and treatment effect (Friede and Kieser (2001)), a treatment arm can be
dropped if interim analyzes show that it is toxic and/or futile (Bauer and Kieser (1999)), the
test statistic can be changed (Kieser et al. (2002)) and one or more endpoints can be discarded
(Kieser et al. (1999)).

Among the various possible design adaptations, in this paper we use the information on the
underlying distribution obtained in an interim analysis for the selection of the test statistic for
the next stage. We act within the rank framework and therefore the underlying distribution
does not need to be specified. However, the power of a rank test depends on the underlying
distribution and then it would be very useful for the researcher to have some information on it at
her/his disposal, in order to use a more (possibly the most) suitable test statistic. We consider
the two sample scale problem for a flexible two stage design (i.e. with one interim analysis)
and we address it using adaptive tests where the data from the first stage are used to compute a
selector statistic to select the test statistic for stage two. Acting within a flexible two stage design
we assume to have no information in the planning phase about the underlying distribution. Our
aim is to see whether the power of adaptive tests may be improved by using the data from the
first stage to get information on the underlying distribution and in particular on its tailweight,
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and then selecting the most suitable test for the second stage according to a selector statistic.
As Friede et al. (2003) that addressed the two sample location problem following the same point
of view, we consider fixed sample sizes in the two stages without sample size re-assessment and
without early stopping for futility.

In section 2 we discuss the two stage adaptive design that is considered in this paper. In
section 3 we present the methods that are compared in the size/power simulation study of section
4. An application example is presented in section 5. The conclusion is in section 6.

2 The two stage adaptive design

We consider the flexible two stage design of Bauer and Köhne (1994) which is traditionally viewed
in terms of p-values for testing the null hypothesis. Its central feature is to conduct an interim
analysis after the first experiment stage and then a second stage with possible modification of the
design at the basis of the interim analysis. We consider the problem of testing for the equality of
scales of two continuous populations given iid sample (Xij i = 1, . . . , nj) from the jth population,
j = 1, 2, with mean µj , scale σj and distribution function F ((x − µj)/σj), n = n1 + n2. The
function F and the constants µ1, µ2, σ1, σ2 are unknown. The system of hypotheses under testing
is

H0 : σ1/σ2 = 1 against H1 : σ1/σ2 > 1.

We test H0 against H1 using a scale test T and we reject the null hypothesis if p1 ≤ α1 where
p1 is the p-value of the T test in the first stage and α1 is the nominal significance level in the
first stage (early rejection of H0). Early acceptance of H0 occurs for p1 ≥ α0. If α1 < p1 < α0

the trial continues, and in this case, after the first stage, we consider other two samples of sizes
m1 and m2 respectively for the first and second population, m = m1 +m2, and we compute the
p-value p2 of the T test. Final rejection or acceptance of H0 is based on the combination of the
p-values of the two stages.

A very important aspect in this two flexible adaptive design is the allocation of the nominal
significance level α to stage one and stage two. In the first stage, H0 is tested at the α1 < α
nominal significance level. In the second stage, H0 is tested at a significance level α2(p1) that
depends on p1. α2(p1) is a non increasing function of p1 because with a small (large) first stage
p-value p1 we need less (more) evidence in stage two to reject H0. It is well known that repeated
analysis might inflate the type one error rate and therefore the function α2(p1) should be chosen
to maintain the desired type one error rate at α:

α ≥ Pr(p1 ≤ α1|H0)+Pr(α1 < p1 < α0∩p2 ≤ α2(p1)|H0) =

∫ α1

0
dp1+

∫ α0

α1

∫ α2(p1)

0
f(p2|p1) dp2 dp1.

The inequality simplifies to

α ≥ α1 +

∫ α0

α1

α2(p1)dp1

by assuming that p1 and p2 under H0 are independent and uniformly distributed between 0 and
1. By using the Fisher’s product criterion H0 is rejected if p1p2 ≤ cα = exp(−0.5χ2

4,1−α) and is
accepted otherwise, where χ2

4,1−α is the (1−α)th percentile of the χ2 distribution with 4 df. In this
case α2(p1) = cα/p1 and the overall type one error rate of the procedure is α1 + cα(lnα0− lnα1)
and therefore to control the nominal significance level α under H0 the decision boundaries for
early rejection α1 and early acceptance α0 have to fulfill the equation α1 + cα(lnα0− lnα1) = α.
A weaker condition on the conditional density of p2 given p1 is to assume that it is stochastically
not smaller than the uniform distribution. This leads to a conservative procedure. As in Friede
et al. (2003) we set α0 = 1 and then the rejection boundary is cα both for the interim analysis
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p-value p1 and for the final analysis p-value p1p2. In fact as α0 → 1, α1 → cα (Bauer and Köhne
(1994)).

As alternative p-value combination method we consider the Liptak one that leads to the
rejection of H0 if Φ−1(1− p1) + Φ−1(1− p2) ≥

√
2z1−α where z1−α is the (1− α)th percentile of

the standard normal distribution. It is important to note that the Liptak combination test does
not allow for early stopping.

3 Methods

For addressing the two sample scale problem, we consider the Hall and Padmanabhan (1997)
HP test because it has been found by Marozzi (2011) to perform well for detecting scale changes
in a detailed study which considered fifteen different tests: it maintained the size close to the
nominal significance level and showed good power for distributions ranging from symmetric to
skewed, light to heavy tails, and low to high kurtosis.

To perform the HP test, firstly consider the pooled Z sample

Z = (Z11, ..., Z1n1 , Z21, ..., Z2n2) = (Z1, ..., Zn1 , Zn1+1, ..., Zn1+n2) = (Zi, i = 1, ..., n)

where Zji = |Xji − X̃j | and X̃j is the median of the jth sample j = 1, 2, and compute the rank
Ri of Zi in Z. Secondly compute TW = (n1TW1 + n2TW2)/n where TWj , j = 1, 2 is the jth
sample Hogg tailweight measure. The HP statistic is defined as

HP =





HP1 =
∑n

i=n1+1 Φ−1((n+Ri)/(2n+ 1))2 if TW < 3

HP2 =
∑n

i=n1+1(1 +Ri/n)2 if 3 ≤ TW < 5

HP3 =
∑n

i=n1+1(1 +Ri/n) if TW ≥ 5

The p-value of the test is estimated via the bootstrap as MHP =
∑D

d=1 I(dHP ≥ 0HP )/D,
where 0HP is the observed value of the HP statistic and dHP is the value of HP in the dth
couple of bootstrap samples obtained by resampling with replacement from Z. Small p-values
speak against H0.

To select the test statistic for the second stage we use the weighted mean of the tailweight
measure of sample 1 and sample 2 in the first stage (pooled estimator of TW ). In a similar context
but for testing for changes in location, Friede et al. (2003) along with the pooled estimator of
the selector statistic, used also the one sample selector statistic (calculated by merging the first
stage data over the two treatments groups), the p-value method which selects the test statistic
with the minimum p-value in the first stage and a bootstrap power estimation procedure. They
conclude that the pooled selector statistic method should be preferred because shows the overall
best performance.

In the one stage design, with o1 = n1 +m1 first sample size and o2 = n2 +m2 second sample
size we consider the HP test and its three components HP1, HP2, HP3. For the two stage design
we consider

1. the same test in both stages;

2. the adaptive test with selection of the test for the second stage according the pooled
estimator of TW computed on the first stage samples.

We consider both the Fisher and Liptak methods to combine the p-values of the first and second
stage.
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4 Results

To assess the size and power properties of the procedures, samples of size (n1, n2,m1,m2) =
(10, 10, 10, 10), (10, 10, 20, 20), (20, 20, 10, 10), (20, 20, 20, 20) were simulated from a light tailed
bimodal distribution (mixture of N(−1.5, 1) and N(1.5, 1) with equal probabilities), uniform,
normal, double exponential, t with 2 df, chi squared with 8 df and exponential. All distributions
but the t were re-scaled to have variance equal to one. 5000 Monte Carlo replications and 1000
bootstrap resamplings were generated. For each replication, two samples of size n1 + m1 and
n2 + m2 were generated. The elements of the second sample were multiplied by θ2 > θ1 > 1,
were θ2 and θ1 were chosen so that the one stage HP test had a power close to 90% and 50%
respectively. Of course, with θ = 1 we are simulating the null hypothesis situation. For the two
stage design, the n1 +m1 elements give rise to the first sample first stage n1 elements and to the
first sample second stage m1 elements, and so do the n2 +m2 elements for the second sample for
the two stages. We consider one sided tests with α = 0.025 and α0 = 1 that lead to a boundary
of cα = 0.0038 for early and final rejection of H0 in the two stage design.

Table 1 shows the maximum estimated significance level (MESL) of the tests. The MESL of
HP and HP1 are similar and larger than the MESL of HP2 and HP3. Note that HP3 has the
smallest MESL. By analyzing the MESL separately for each distribution and sample size settings
we obtain the same results.

Tables 2 to 8 show the estimated significance level and power of the tests for the various
distribution and sample size settings. For a fair comparison of the tests, not only their power
but also their expected total sample sizes and estimated probability for rejection of the null
hypothesis after the first stage for the two stage tests based on the Fisher combining function
(which permits early rejection of the null hypothesis) should be considered. While the total
sample size is always o = o1 + o2 for the one stage tests and the two stage tests based on the
Liptak combining function, the expected total sample size of the two stage tests based on the
Fisher combining function is o−mPr(early stopping). Both the expected total sample size and
the probability for early stopping are reported in tables 2 to 8.

What is the most powerful one stage test? The HP and HP1 test behave very similarly and
are more powerful than the HP2 and HP3 test for the bimodal, uniform, normal, chi squared
and exponential distribution. The HP1 test is more powerful than the other ones for the double
exponential distribution. The HP and HP2 test behave very similarly and are slightly more
powerful than the HP1 and HP3 test for the t distribution. Therefore the most powerful one
stage test is the HP1 test with the exception of the case of the t distribution where it is slightly
less powerful than the HP and HP2 test. The results do not change as the sample size setting
changes.

Should the adaptive two stage design be preferred to the non adaptive two stage design? The
adaptive and non adaptive two stage tests based on the Fisher combining function behave always
the same. Among the two stage tests based on the Liptak combining function, the adaptation
in the second stage improves the power of both the HP2 and HP3 test for all the distributions,
although for the t distribution the improvement is less marked. On the contrary, for the HP1

tests the adaptation using the Liptak combining function does not improve the power. Therefore
the adaptation is useful only for the HP2 and HP3 test with the Liptak combining function.

What is the best combining function? The use of the Liptak function leads to more powerful
tests compared to the use of the Fisher function. This is especially true for the HP2 and HP3

test, whereas for the HP and HP1 test the difference in power is small. It is important to
emphasize that the Fisher combination allows for early rejection of the null hypothesis resulting
in a lower average sample size. This could be particularly important for very expensive or with
ethical problem studies.
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When the two stage tests are more powerful than the one stage tests? It is interesting to
note that the two stage test with HP3 in the first stage and the adaptive choice in the second
stage with Liptak combination is more powerful than the one stage HP3 test. This is true
also for HP2 under normal, chi squared and exponential distributions, and for HP1 under the
exponential distribution. The two stage test with HP1 in the first stage and the adaptive choice
in the second stage with Liptak combination is slightly less powerful than the one stage HP1 test
under normal, double exponential, t and chi squared distributions. In general, the two stage test
with the adaptive choice in the second stage and with Liptak combination when it is not more
powerful than the corresponding one stage test shows however a quite similar power behavior.

5 Application

As noted by Neuhäuser (2001), even if adaptive designs are particularly useful for clinical trials,
they are also useful for ecological studies. Furness and Bryant (1996) studied the field metabolic
rate (FMR in Kj/d) of the northern fulmars (fulmarus glacialis). The fulmarus glacialis is one
of the more abundant seabirds in the northern North Pacific and it is suspected to have rather
lower energy expenditures than many other seabirds and therefore it is of interest to study its
FMR. Table 9 displays the FMR as a multiple of the basal metabolic rate of eight male and six
female subjects.

Table 9: The FMR as a multiple of the basal metabolic rate of eight male and six female fulmars.
Male subjects

7.85 7.03 6.37 5.73 3.53 2.3 1.42 1.4
Female subjects

7.17 5.46 4.75 3.95 3.94 2.67 - -

We would like to test the null hypothesis of equal variances against the one sided alternative
that the variance of male FMR is greater than the variance of female FMR. For the purpose of
illustrating the procedures based on the Fisher combination, this small data set is regarded as
first stage data. The p-values of the tests (estimated with 1000 bootstrap resamplings) are .030,
.029 and .041 for the HP1, HP2 and HP3 test respectively. Since TW = 1.65 the adaptive test
HP selects the HP1 component. Since the p-value of the HP test is greater that C.025 = .0038
the study is not early stopped after the first stage but is continued with the second stage. To
conclude that the variability of male FMR is greater than the variability of female FMR (at the
nominal significance level of .025) the second stage p-value of the HP1 test (selected at the basis
of the TW result at stage one) has to be .0038/.030 ≈ .1266 or smaller.

6 Conclusion

Flexible (adaptive) study designs allow to modify the design features, if necessary, with the
aim at improving the design. Among the various possible design adaptations, in this paper
we used the information on the underlying distribution obtained in an interim analysis for the
selection of the test statistic for the next stage. We acted within the rank framework without
the need for specifying the underlying distribution. However, the power of a rank test depends
on the underlying distribution and then it would be very useful for the researcher to have some
information on it, in order to use the (possibly) the most suitable test statistic. We considered
the two sample scale problem for the flexible two stage design of Bauer and Köhne (1994) and
we addressed it using adaptive tests where the data from the first stage are used to compute a

Optimal Design of Experiments – Theory and Application, Vienna 2011

97



selector statistic to select the test statistic for stage two. Acting within a flexible two stage design
we assume to have no information in the planning phase about the underlying distribution. Our
aim was to see whether the power of adaptive tests may be improved by using the data from the
first stage to get information on the underlying distribution and in particular on its tailweight,
and then selecting the most suitable test for the second stage according to a selector statistic. For
addressing the two sample scale problem, we considered the Hall and Padmanabhan (1997) HP
test because it has been found to perform well for detecting scale changes under distributions
ranging from symmetric to skewed, light to heavy tails, and low to high kurtosis. More precisely,
in the one stage design we considered the HP test and its three components HP1, HP2, HP3

and for the two stage design we considered (i) the same test in both stages and (ii) the adaptive
test with selection of the test for the second stage according the pooled estimator of the Hogg
tailweight measure computed on the first stage samples. We considered both the Fisher and
Liptak methods to combine the p-values of the first and second stages.

After performing a Monte Carlo study to compare size and power of the different procedures,
we concluded that

1. the most powerful one stage test is the HP1 test with the exception of the case of the t
distribution where it is slightly less powerful than the HP and HP2 tests;

2. the adaptation is useful only for theHP2 andHP3 tests with the Liptak combining function;

3. the use of the Liptak function leads to more powerful tests compared to the use of the
Fisher function;

4. the two stage test with the adaptive choice in the second stage and with Liptak combination
when it is not more powerful than the corresponding one stage test shows however a quite
similar power behavior.

Generalizations require caution because the results are based on simulation experiments.
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Table 1: MESL of the tests.
Two stage

Fisher Liptak
Test One combination combination

1st stage stage Same Adaptive Same Adaptive
Bimodal

HP 0.031 0.033 0.033 0.031 0.031
HP1 0.031 0.033 0.033 0.031 0.031
HP2 0.022 0.021 0.021 0.021 0.027
HP3 0.021 0.018 0.019 0.020 0.025

Uniform
HP 0.029 0.029 0.029 0.029 0.029
HP1 0.029 0.029 0.029 0.029 0.029
HP2 0.024 0.019 0.020 0.022 0.026
HP3 0.022 0.017 0.017 0.018 0.025

Normal
HP 0.029 0.035 0.035 0.034 0.034
HP1 0.029 0.034 0.034 0.033 0.034
HP2 0.026 0.023 0.023 0.023 0.029
HP3 0.023 0.020 0.021 0.021 0.027

DE
HP 0.037 0.039 0.039 0.041 0.038
HP1 0.035 0.037 0.037 0.040 0.037
HP2 0.030 0.029 0.030 0.030 0.032
HP3 0.027 0.025 0.025 0.027 0.030

t2
HP 0.030 0.034 0.033 0.033 0.031
HP1 0.030 0.033 0.033 0.032 0.030
HP2 0.026 0.021 0.022 0.024 0.024
HP3 0.026 0.020 0.020 0.021 0.023

χ2

HP 0.030 0.037 0.037 0.036 0.036
HP1 0.030 0.037 0.037 0.036 0.036
HP2 0.029 0.028 0.029 0.029 0.028
HP3 0.027 0.024 0.025 0.026 0.026

Exp
HP 0.038 0.039 0.039 0.038 0.037
HP1 0.036 0.037 0.037 0.036 0.036
HP2 0.030 0.027 0.027 0.029 0.034
HP3 0.029 0.026 0.026 0.025 0.031
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Table 2: Size and power for the bimodal distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.030 0.003 39.9 0.026 0.026 0.029 0.029
HP1 0.030 0.003 39.9 0.026 0.026 0.029 0.029
HP2 0.019 0.001 40.0 0.015 0.016 0.016 0.024
HP3 0.017 0.001 40.0 0.012 0.014 0.013 0.020

1.47 HP 0.526 0.042 39.2 0.385 0.385 0.432 0.432
HP1 0.526 0.042 39.2 0.385 0.385 0.432 0.432
HP2 0.334 0.023 39.5 0.217 0.219 0.245 0.326
HP3 0.285 0.018 39.6 0.172 0.175 0.193 0.296

1.95 HP 0.897 0.156 36.9 0.780 0.780 0.819 0.819
HP1 0.897 0.156 36.9 0.780 0.780 0.819 0.819
HP2 0.711 0.096 38.1 0.538 0.538 0.581 0.704
HP3 0.648 0.081 38.4 0.452 0.454 0.488 0.661

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.029 0.003 59.9 0.026 0.026 0.026 0.026

HP1 0.029 0.003 59.9 0.026 0.026 0.026 0.026
HP2 0.019 0.001 60.0 0.017 0.017 0.018 0.025
HP3 0.018 0.001 60.0 0.013 0.014 0.016 0.023

1.32 HP 0.475 0.026 59.0 0.378 0.378 0.402 0.402
HP1 0.475 0.026 59.0 0.378 0.378 0.402 0.402
HP2 0.315 0.018 59.3 0.221 0.221 0.240 0.327
HP3 0.277 0.015 59.4 0.176 0.176 0.196 0.304

1.65 HP 0.907 0.081 56.7 0.832 0.832 0.844 0.844
HP1 0.907 0.081 56.7 0.832 0.832 0.844 0.844
HP2 0.737 0.042 58.3 0.609 0.610 0.633 0.768
HP3 0.677 0.034 58.6 0.522 0.523 0.548 0.732

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.031 0.005 59.9 0.030 0.030 0.031 0.031

HP1 0.031 0.005 59.9 0.030 0.030 0.031 0.031
HP2 0.022 0.004 59.9 0.021 0.021 0.021 0.027
HP3 0.021 0.003 59.9 0.018 0.018 0.020 0.025

1.32 HP 0.471 0.096 58.1 0.373 0.373 0.403 0.403
HP1 0.471 0.096 58.1 0.373 0.373 0.403 0.403
HP2 0.309 0.047 59.1 0.222 0.222 0.241 0.304
HP3 0.266 0.036 59.3 0.178 0.179 0.194 0.277

1.65 HP 0.902 0.382 52.4 0.825 0.825 0.839 0.839
HP1 0.902 0.382 52.4 0.825 0.825 0.839 0.839
HP2 0.736 0.226 55.5 0.606 0.607 0.629 0.720
HP3 0.673 0.182 56.4 0.529 0.530 0.552 0.686

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.026 0.005 79.8 0.033 0.033 0.029 0.029

HP1 0.026 0.005 79.8 0.033 0.033 0.029 0.029
HP2 0.022 0.003 79.9 0.020 0.021 0.019 0.025
HP3 0.021 0.003 79.9 0.018 0.019 0.018 0.022

1.27 HP 0.501 0.068 77.3 0.420 0.420 0.451 0.451
HP1 0.501 0.068 77.3 0.420 0.420 0.451 0.451
HP2 0.338 0.040 78,4 0.257 0.258 0.282 0.363
HP3 0.291 0.032 78.7 0.221 0.221 0.239 0.339

1.52 HP 0.912 0.260 69.6 0.854 0.854 0.878 0.878
HP1 0.912 0.260 69.6 0.854 0.854 0.878 0.878
HP2 0.736 0.134 74.6 0.632 0.633 0.665 0.790
HP3 0.672 0.110 75.6 0.555 0.556 0.591 0.759
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Table 3: Size and power for the uniform distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.024 0.004 39.9 0.024 0.024 0.022 0.022
HP1 0.024 0.004 39.9 0.024 0.024 0.022 0.022
HP2 0.021 0.002 40.0 0.014 0.014 0.015 0.019
HP3 0.018 0.001 40.0 0.011 0.012 0.012 0.017

1.4 HP 0.503 0.045 39.1 0.350 0.350 0.390 0.390
HP1 0.503 0.045 39.1 0.350 0.350 0.390 0.390
HP2 0.294 0.024 39.5 0.191 0.191 0.212 0.299
HP3 0.255 0.021 39.6 0.148 0.148 0.165 0.269

1.85 HP 0.901 0.153 36.9 0.772 0.772 0.813 0.813
HP1 0.901 0.153 36.9 0.772 0.772 0.813 0.813
HP2 0.697 0.084 38.3 0.523 0.523 0.567 0.694
HP3 0.627 0.064 38.7 0.432 0.432 0.477 0.651

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.029 0.003 59.9 0.029 0.029 0.029 0.029

HP1 0.029 0.003 59.9 0.029 0.029 0.029 0.029
HP2 0.024 0.002 59.9 0.019 0.019 0.022 0.024
HP3 0.022 0.002 59.9 0.017 0.017 0.018 0.022

1.27 HP 0.490 0.022 59.1 0.363 0.363 0.386 0.386
HP1 0.490 0.022 59.1 0.363 0.363 0.386 0.386
HP2 0.272 0.012 59.5 0.183 0.184 0.203 0.301
HP3 0.230 0.009 59.6 0.148 0.150 0.163 0.280

1.55 HP 0.892 0.075 57.0 0.788 0.788 0.805 0.805
HP1 0.892 0.075 57.0 0.788 0.788 0.805 0.805
HP2 0.656 0.041 58.4 0.529 0.529 0.552 0.716
HP3 0.592 0.033 58.7 0.448 0.448 0.470 0.683

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.028 0.006 59.9 0.028 0.028 0.025 0.025

HP1 0.028 0.006 59.9 0.028 0.028 0.025 0.025
HP2 0.021 0.003 59.9 0.019 0.020 0.018 0.024
HP3 0.020 0.003 59.9 0.016 0.017 0.015 0.024

1.27 HP 0.509 0.096 58.1 0.374 0.374 0.397 0.397
HP1 0.509 0.096 58.1 0.374 0.374 0.397 0.397
HP2 0.286 0.047 59.1 0.195 0.195 0.213 0.279
HP3 0.245 0.037 59.3 0.160 0.162 0.171 0.257

1.55 HP 0.891 0.360 52.8 0.791 0.791 0.807 0.807
HP1 0.891 0.360 52.8 0.791 0.791 0.807 0.807
HP2 0.657 0.175 56.5 0.515 0.515 0.541 0.658
HP3 0.590 0.137 57.3 0.430 0.430 0.454 0.611

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.028 0.004 79.8 0.026 0.026 0.027 0.027

HP1 0.028 0.004 79.8 0.026 0.026 0.027 0.027
HP2 0.023 0.003 79.9 0.018 0.018 0.021 0.026
HP3 0.021 0.003 79.9 0.016 0.016 0.017 0.025

1.22 HP 0.502 0.065 77.4 0.389 0.389 0.419 0.419
HP1 0.502 0.065 77.4 0.389 0.389 0.419 0.419
HP2 0.264 0.031 78.8 0.198 0.200 0.217 0.312
HP3 0.227 0.023 79.1 0.164 0.167 0.180 0.286

1.43 HP 0.909 0.236 70.5 0.818 0.818 0.843 0.843
HP1 0.909 0.236 70.5 0.818 0.818 0.843 0.843
HP2 0.645 0.112 75.5 0.537 0.538 0.573 0.726
HP3 0.573 0.087 76.5 0.461 0.462 0.496 0.691
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Table 4: Size and power for the normal distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.029 0.005 39.9 0.033 0.033 0.031 0.031
HP1 0.029 0.005 39.9 0.033 0.033 0.031 0.031
HP2 0.022 0.003 39.9 0.023 0.023 0.022 0.029
HP3 0.020 0.003 39.9 0.019 0.019 0.019 0.025

1.65 HP 0.506 0.055 38.9 0.425 0.425 0.463 0.463
HP1 0.507 0.055 38.9 0.425 0.425 0.463 0.463
HP2 0.361 0.029 39.4 0.276 0.277 0.308 0.389
HP3 0.323 0.025 39.5 0.226 0.227 0.253 0.357

2.35 HP 0.900 0.193 36.1 0.827 0.827 0.857 0.857
HP1 0.904 0.193 36.1 0.827 0.827 0.858 0.857
HP2 0.775 0.109 37.8 0.655 0.655 0.693 0.778
HP3 0.719 0.091 38.2 0.565 0.565 0.614 0.751

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.029 0.005 59.8 0.034 0.034 0.031 0.030

HP1 0.028 0.005 59.8 0.033 0.033 0.030 0.030
HP2 0.026 0.003 59.9 0.022 0.022 0.022 0.026
HP3 0.023 0.002 59.9 0.019 0.021 0.020 0.024

1.45 HP 0.475 0.031 58.7 0.407 0.407 0.431 0.431
HP1 0.476 0.031 58.7 0.407 0.407 0.431 0.431
HP2 0.352 0.016 59.4 0.274 0.276 0.296 0.372
HP3 0.320 0.014 59.4 0.229 0.232 0.253 0.345

1.9 HP 0.891 0.098 56.1 0.835 0.835 0.850 0.853
HP1 0.892 0.098 56.1 0.837 0.837 0.853 0.853
HP2 0.758 0.053 57.9 0.658 0.658 0.685 0.790
HP3 0.708 0.045 58.2 0.588 0.589 0.616 0.765

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.028 0.003 59.9 0.027 0.027 0.028 0.028

HP1 0.028 0.003 59.9 0.028 0.027 0.027 0.028
HP2 0.021 0.003 59.9 0.020 0.021 0.022 0.025
HP3 0.021 0.002 60.0 0.018 0.019 0.020 0.024

1.45 HP 0.487 0.102 58.0 0.407 0.407 0.440 0.437
HP1 0.487 0.102 58.0 0.407 0.407 0.441 0.439
HP2 0.360 0.061 58.8 0.286 0.287 0.310 0.363
HP3 0.327 0.050 59.0 0.240 0.240 0.262 0.343

1.9 HP 0.885 0.364 52.7 0.827 0.827 0.841 0.838
HP1 0.886 0.366 52.7 0.829 0.829 0.844 0.840
HP2 0.749 0.233 55.3 0.646 0.647 0.680 0.755
HP3 0.702 0.195 56.1 0.583 0.584 0.608 0.721

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.029 0.006 79.8 0.035 0.035 0.034 0.034

HP1 0.029 0.006 79.8 0.034 0.034 0.033 0.034
HP2 0.025 0.003 79.9 0.023 0.023 0.023 0.028
HP3 0.023 0.002 79.9 0.020 0.020 0.021 0.027

1.4 HP 0.530 0.083 76.7 0.465 0.465 0.494 0.493
HP1 0.531 0.083 76.7 0.467 0.467 0.495 0.493
HP2 0.380 0.048 78.1 0.326 0.326 0.354 0.424
HP3 0.351 0.039 78.4 0.282 0.282 0.310 0.401

1.75 HP 0.907 0.272 69.1 0.861 0.861 0.881 0.880
HP1 0.908 0.273 69.1 0.862 0.862 0.884 0.880
HP2 0.782 0.166 73.4 0.716 0.716 0.741 0.822
HP3 0.736 0.142 74.3 0.658 0.658 0.693 0.800
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Table 5: Size and power for the double exponential distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.033 0.004 39.9 0.033 0.033 0.032 0.032
HP1 0.031 0.004 39.9 0.033 0.033 0.032 0.032
HP2 0.023 0.002 40.0 0.020 0.020 0.023 0.027
HP3 0.023 0.002 40.0 0.017 0.017 0.017 0.025

2.1 HP 0.492 0.067 38.7 0.445 0.445 0.484 0.483
HP1 0.513 0.066 38.7 0.446 0.446 0.484 0.484
HP2 0.420 0.037 39.3 0.322 0.323 0.363 0.422
HP3 0.384 0.032 39.4 0.268 0.269 0.307 0.392

3.7 HP 0.891 0.246 35.1 0.881 0.881 0.901 0.900
HP1 0.930 0.246 35.1 0.883 0.883 0.904 0.901
HP2 0.851 0.143 37.1 0.751 0.751 0.791 0.855
HP3 0.817 0.120 37.6 0.682 0.682 0.726 0.831

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.027 0.004 59.8 0.027 0.027 0.031 0.029

HP1 0.025 0.004 59.8 0.026 0.026 0.029 0.029
HP2 0.022 0.003 59.9 0.021 0.021 0.023 0.023
HP3 0.021 0.002 59.9 0.020 0.021 0.019 0.021

1.8 HP 0.518 0.044 58.2 0.481 0.482 0.504 0.516
HP1 0.547 0.044 58.2 0.493 0.493 0.519 0.517
HP2 0.456 0.028 58.9 0.379 0.379 0.409 0.462
HP3 0.429 0.021 59.2 0.334 0.336 0.360 0.438

2.7 HP 0.919 0.164 53.4 0.903 0.903 0.917 0.930
HP1 0.949 0.164 53.4 0.924 0.924 0.932 0.930
HP2 0.898 0.097 56.1 0.839 0.839 0.858 0.901
HP3 0.869 0.079 56.8 0.787 0.787 0.813 0.883

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.037 0.005 59.9 0.039 0.039 0.041 0.038

HP1 0.035 0.005 59.9 0.037 0.037 0.040 0.037
HP2 0.030 0.004 59.9 0.029 0.030 0.030 0.032
HP3 0.027 0.004 59.9 0.025 0.025 0.027 0.030

1.8 HP 0.517 0.147 57.1 0.473 0.473 0.497 0.477
HP1 0.549 0.151 57.0 0.491 0.491 0.513 0.487
HP2 0.454 0.103 57.9 0.386 0.386 0.408 0.439
HP3 0.424 0.087 58.3 0.341 0.341 0.367 0.417

2.7 HP 0.922 0.486 50.3 0.906 0.907 0.917 0.898
HP1 0.948 0.525 49.5 0.927 0.927 0.936 0.921
HP2 0.901 0.403 51.9 0.841 0.841 0.860 0.879
HP3 0.875 0.348 53.0 0.796 0.796 0.817 0.860

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.031 0.005 79.8 0.034 0.034 0.034 0.031

HP1 0.031 0.004 79.8 0.031 0.031 0.032 0.031
HP2 0.026 0.003 79.9 0.026 0.026 0.027 0.026
HP3 0.025 0.002 79.9 0.023 0.023 0.024 0.026

1.62 HP 0.493 0.101 75.9 0.478 0.479 0.503 0.494
HP1 0.534 0.100 76.0 0.495 0.495 0.526 0.502
HP2 0.446 0.071 77.2 0.400 0.401 0.427 0.451
HP3 0.418 0.063 77.5 0.369 0.369 0.394 0.434

2.35 HP 0.888 0.327 66.9 0.880 0.880 0.896 0.888
HP1 0.930 0.344 66.2 0.903 0.903 0.920 0.906
HP2 0.869 0.249 70.0 0.826 0.827 0.850 0.873
HP3 0.843 0.216 71.4 0.788 0.789 0.817 0.861
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Table 6: Size and power for the t2 distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.029 0.005 39.9 0.031 0.031 0.032 0.030
HP1 0.027 0.005 39.9 0.028 0.028 0.030 0.029
HP2 0.024 0.002 40.0 0.020 0.020 0.022 0.024
HP3 0.023 0.002 40.0 0.016 0.016 0.017 0.022

2.1 HP 0.471 0.074 38.5 0.445 0.444 0.471 0.463
HP1 0.476 0.075 38.5 0.444 0.444 0.468 0.463
HP2 0.450 0.043 39.1 0.355 0.355 0.394 0.422
HP3 0.425 0.036 39.3 0.311 0.311 0.344 0.397

3.75 HP 0.906 0.274 34.5 0.874 0.874 0.891 0.884
HP1 0.893 0.277 34.5 0.872 0.872 0.890 0.884
HP2 0.902 0.174 36.5 0.806 0.806 0.840 0.860
HP3 0.879 0.145 37.1 0.743 0.743 0.789 0.841

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.027 0.004 59.8 0.030 0.030 0.030 0.031

HP1 0.025 0.004 59.8 0.030 0.030 0.030 0.030
HP2 0.024 0.000 60.0 0.020 0.020 0.024 0.024
HP3 0.023 0.001 60.0 0.018 0.018 0.021 0.021

1.85 HP 0.498 0.047 58.1 0.463 0.463 0.485 0.479
HP1 0.484 0.048 58.1 0.458 0.458 0.479 0.475
HP2 0.489 0.029 58.8 0.404 0.404 0.436 0.446
HP3 0.466 0.024 59.0 0.362 0.363 0.392 0.422

2.75 HP 0.897 0.147 54.1 0.852 0.852 0.859 0.856
HP1 0.864 0.149 54.0 0.841 0.842 0.854 0.853
HP2 0.895 0.092 56.3 0.826 0.826 0.849 0.845
HP3 0.877 0.076 56.9 0.788 0.788 0.813 0.827

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.030 0.005 59.9 0.034 0.033 0.033 0.028

HP1 0.030 0.006 59.9 0.032 0.032 0.032 0.028
HP2 0.026 0.003 59.9 0.021 0.022 0.023 0.024
HP3 0.024 0.003 59.9 0.018 0.018 0.019 0.023

1.85 HP 0.505 0.128 57.4 0.456 0.456 0.476 0.451
HP1 0.480 0.132 57.4 0.450 0.450 0.471 0.437
HP2 0.497 0.109 57.8 0.408 0.408 0.436 0.441
HP3 0.473 0.096 58.1 0.367 0.367 0.395 0.424

2.75 HP 0.899 0.413 51.7 0.855 0.855 0.866 0.853
HP1 0.867 0.427 51.5 0.848 0.848 0.860 0.843
HP2 0.899 0.378 52.4 0.827 0.827 0.849 0.849
HP3 0.876 0.343 53.1 0.786 0.786 0.807 0.833

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.025 0.004 79.8 0.031 0.031 0.030 0.028

HP1 0.029 0.004 79.8 0.033 0.033 0.032 0.027
HP2 0.025 0.003 79.9 0.021 0.022 0.022 0.023
HP3 0.026 0.002 79.9 0.020 0.020 0.020 0.021

1.65 HP 0.470 0.079 76.9 0.434 0.434 0.457 0.442
HP1 0.443 0.082 76.7 0.430 0.430 0.444 0.444
HP2 0.466 0.065 77.4 0.406 0.406 0.437 0.433
HP3 0.444 0.059 77.7 0.373 0.374 0.407 0.419

2.3 HP 0.881 0.277 68.9 0.850 0.850 0.867 0.861
HP1 0.839 0.294 68.2 0.827 0.827 0.846 0.852
HP2 0.880 0.250 70.0 0.834 0.834 0.858 0.858
HP3 0.865 0.218 71.3 0.802 0.802 0.837 0.848
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Table 7: Size and power for the χ2 distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.028 0.006 39.9 0.032 0.032 0.030 0.030
HP1 0.028 0.006 39.9 0.032 0.032 0.030 0.030
HP2 0.024 0.003 39.9 0.020 0.021 0.021 0.025
HP3 0.022 0.003 39.9 0.016 0.017 0.017 0.025

1.77 HP 0.515 0.035 39.3 0.436 0.436 0.478 0.478
HP1 0.519 0.035 39.3 0.436 0.436 0.479 0.478
HP2 0.380 0.018 39.6 0.264 0.264 0.316 0.400
HP3 0.335 0.013 39.7 0.209 0.209 0.252 0.368

2.6 HP 0.895 0.125 37.5 0.840 0.840 0.867 0.868
HP1 0.907 0.125 37.5 0.840 0.840 0.868 0.868
HP2 0.776 0.062 38.8 0.613 0.613 0.685 0.787
HP3 0.710 0.046 39.1 0.516 0.516 0.586 0.750

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.030 0.006 59.8 0.037 0.037 0.036 0.036

HP1 0.030 0.006 59.8 0.037 0.037 0.036 0.036
HP2 0.029 0.004 59.9 0.028 0.029 0.029 0.028
HP3 0.027 0.003 59.9 0.024 0.025 0.026 0.026

1.55 HP 0.496 0.024 59.0 0.433 0.433 0.461 0.461
HP1 0.495 0.024 59.0 0.434 0.434 0.462 0.461
HP2 0.379 0.010 59.6 0.288 0.297 0.319 0.397
HP3 0.339 0.007 59.7 0.236 0.246 0.269 0.369

2.1 HP 0.888 0.060 57.6 0.841 0.840 0.858 0.860
HP1 0.892 0.060 57.6 0.846 0.846 0.861 0.860
HP2 0.784 0.029 58.9 0.680 0.683 0.717 0.808
HP3 0.737 0.021 59.2 0.600 0.603 0.641 0.783

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.023 0.004 59.9 0.029 0.029 0.030 0.029

HP1 0.022 0.003 59.9 0.028 0.028 0.030 0.029
HP2 0.024 0.004 59.9 0.019 0.019 0.019 0.025
HP3 0.022 0.003 59.9 0.015 0.015 0.016 0.023

1.55 HP 0.503 0.119 57.6 0.447 0.447 0.474 0.471
HP1 0.503 0.119 57.6 0.447 0.447 0.474 0.472
HP2 0.383 0.053 58.9 0.291 0.291 0.331 0.398
HP3 0.344 0.039 59.2 0.238 0.238 0.275 0.373

2.1 HP 0.883 0.370 52.6 0.840 0.840 0.851 0.846
HP1 0.886 0.377 52.5 0.847 0.847 0.857 0.850
HP2 0.779 0.186 56.3 0.680 0.680 0.719 0.782
HP3 0.739 0.145 57.1 0.601 0.601 0.644 0.751

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.027 0.003 79.9 0.028 0.029 0.029 0.030

HP1 0.027 0.003 79.9 0.028 0.028 0.029 0.030
HP2 0.022 0.002 79.9 0.021 0.021 0.023 0.027
HP3 0.021 0.002 79.9 0.018 0.018 0.020 0.025

1.47 HP 0.510 0.081 76.8 0.469 0.469 0.499 0.498
HP1 0.511 0.081 76.8 0.471 0.471 0.502 0.498
HP2 0.392 0.040 78.4 0.334 0.335 0.373 0.427
HP3 0.359 0.029 78.8 0.290 0.290 0.327 0.405

1.9 HP 0.906 0.277 68.9 0.873 0.873 0.893 0.892
HP1 0.908 0.280 68.8 0.878 0.878 0.899 0.894
HP2 0.818 0.132 74.7 0.741 0.741 0.784 0.843
HP3 0.781 0.101 75.9 0.684 0.684 0.730 0.820
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Table 8: Size and power for the exponential distribution.
Two stage

Fisher combination Liptak combination
θ Test 1st One Prob (rej. Average Same Adaptive Same Adaptive

stage stage 1st stage) s. size
(n1, n2,m1,m2) = (10, 10, 10, 10)

1 HP 0.035 0.006 39.9 0.035 0.035 0.034 0.034
HP1 0.032 0.006 39.9 0.034 0.035 0.034 0.034
HP2 0.026 0.003 39.9 0.026 0.026 0.026 0.030
HP3 0.025 0.003 39.9 0.021 0.021 0.022 0.028

2.1 HP 0.500 0.054 38.9 0.447 0.447 0.491 0.490
HP1 0.506 0.054 38.9 0.447 0.447 0.492 0.491
HP2 0.398 0.030 39.4 0.310 0.311 0.350 0.413
HP3 0.355 0.021 39.6 0.250 0.252 0.294 0.385

3.7 HP 0.907 0.158 36.8 0.875 0.875 0.897 0.896
HP1 0.925 0.158 36.8 0.877 0.877 0.898 0.897
HP2 0.837 0.099 38.0 0.718 0.719 0.776 0.847
HP3 0.791 0.072 38.6 0.634 0.635 0.698 0.818

(n1, n2,m1,m2) = (10, 10, 20, 20)
1 HP 0.037 0.005 59.8 0.038 0.038 0.038 0.037

HP1 0.036 0.005 59.8 0.037 0.037 0.036 0.036
HP2 0.028 0.003 59.9 0.027 0.027 0.029 0.034
HP3 0.025 0.002 59.9 0.023 0.023 0.025 0.031

1.8 HP 0.499 0.035 58.6 0.445 0.445 0.474 0.478
HP1 0.503 0.035 58.6 0.447 0.447 0.479 0.478
HP2 0.405 0.022 59.1 0.344 0.345 0.377 0.433
HP3 0.376 0.016 59.3 0.297 0.298 0.330 0.410

2.7 HP 0.894 0.094 56.2 0.859 0.859 0.871 0.873
HP1 0.901 0.094 56.2 0.869 0.869 0.876 0.874
HP2 0.819 0.057 57.7 0.752 0.752 0.775 0.834
HP3 0.782 0.039 58.4 0.693 0.694 0.723 0.815

(n1, n2,m1,m2) = (20, 20, 10, 10)
1 HP 0.038 0.005 59.9 0.039 0.039 0.038 0.037

HP1 0.034 0.004 59.9 0.037 0.037 0.035 0.035
HP2 0.030 0.003 59.9 0.027 0.027 0.029 0.028
HP3 0.029 0.002 60.0 0.022 0.022 0.024 0.027

1.8 HP 0.503 0.111 57.8 0.447 0.447 0.475 0.465
HP1 0.508 0.112 57.8 0.451 0.451 0.478 0.469
HP2 0.401 0.066 58.7 0.338 0.338 0.364 0.408
HP3 0.369 0.052 59.0 0.286 0.287 0.318 0.386

2.7 HP 0.885 0.366 52.7 0.841 0.841 0.858 0.849
HP1 0.898 0.379 52.4 0.850 0.850 0.869 0.854
HP2 0.805 0.242 55.2 0.731 0.731 0.759 0.802
HP3 0.776 0.196 56.1 0.676 0.676 0.704 0.780

(n1, n2,m1,m2) = (20, 20, 20, 20)
1 HP 0.035 0.005 79.8 0.037 0.037 0.037 0.035

HP1 0.034 0.005 79.8 0.035 0.034 0.034 0.034
HP2 0.028 0.004 79.9 0.026 0.026 0.028 0.031
HP3 0.027 0.003 79.9 0.026 0.026 0.025 0.029

1.62 HP 0.471 0.070 77.2 0.430 0.430 0.462 0.453
HP1 0.481 0.072 77.1 0.434 0.434 0.468 0.458
HP2 0.374 0.046 78.2 0.330 0.330 0.365 0.405
HP3 0.352 0.036 78.5 0.295 0.295 0.329 0.387

2.35 HP 0.894 0.272 69.1 0.866 0.866 0.885 0.880
HP1 0.909 0.279 68.8 0.878 0.878 0.898 0.888
HP2 0.823 0.181 72.7 0.781 0.782 0.814 0.847
HP3 0.793 0.148 74.1 0.741 0.742 0.777 0.836
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Nonlinear mixed Effects models:
Approximations of the Fisher Information and Design

Tobias Mielke∗

Otto-von-Guericke University Magdeburg, Germany

Abstract: The problem of the missing closed form representation of the probability
density of the observations in nonlinear mixed effects models carries forward to the
calculation of the Fisher information. Linearizations of the response function are
often applied for approximating the underlying statistical model. The impact of
different linearizations on the design of experiments will be briefly discussed in this
article and an alternative motivation for an approximation of the Fisher information
will be presented. The different results will be illustrated in the example of a simple
population pharmacokinetic model.

Keywords: Fisher information, mixed effects models, nonlinear models, optimal
design.

1 Introduction

Mixed effects models are often applied for the analysis of grouped data. The difference of observa-
tions of different groups are in these models assumed to depend on observation errors and group
wise varying parameter vectors. Specially in pharmacological studies each individual can be in-
terpreted as a single group and insight in the population behavior can be obtained by modeling
the individual parameter vectors as identically distributed random variables. Nonlinear mixed
effects models are in the literature often described under the assumption of normally distributed
random effects. Estimators based on weighted sums of squares (e.g. Pinheiro and Bates (2000))
or on stochastic approximations (e.g. Kuhn and Lavielle (2001)) are proposed for the analysis
of the population behavior, as no closed form representation of the likelihood function in these
models exists. The used estimators are typically assumed to be consistent with an information
matrix behaving as in linear mixed effects models or nonlinear models with heteroscedastic nor-
mal errors. However, the limitations of the stochastic behavior of some estimators were discussed
on the monoexponential model by Demidenko (2005). Linearized models build the foundation for
experimental designs in nonlinear mixed effects models. The different linearization approaches
yield distinct information matrices, such that the approximations might have a big influence on
the design of studies, as illustrated by Mielke and Schwabe (2010) in a simple example.
After introducing the mixed effects model in the second section, an alternative motivation of an
approximation of the Fisher information, based on approximations of conditional moments, is
presented in the third section. Designs in population studies are briefly defined in the fourth
section, before an example of a pharmacokinetic model shows the influence of different approxi-
mations on the design in the fifth section.

2 Mixed effects models

In the mixed effects models, the j-th observation of the i-th individual under experimental setting
xij ∈ X is with a response function η described by

Yij = η(βi, xij) + εij ,

∗Corresponding author: tobias.mielke@ovgu.de
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with an individual parameter vector βi ∈ Rp and real valued observation errors εij . The response
function η is assumed to be differentiable in βi and continuous on the compact design space X .
The mi dimensional observation vector Yi is for given individual parameter vectors βi with the
exact individual design

ξi = (xi1, ..., ximi) where xij ∈ X , j = 1, ...,mi

and the vector valued response function

η(βi, ξi) := (η(βi, xi1), ..., η(βi, ximi))
T ,

assumed to be normally distributed:

Yi ∼ N(η(βi, ξi), σ
2Imi).

The inter-individual variation is induced by the individual wise varying parameter vectors βi
which are assumed to be realizations of normally distributed random variables:

βi ∼ N(β, σ2D).

The observation errors εi = (εi1, ..., εimi) and individual parameter vectors βi are assumed to be
independent and observations of different individuals are considered to be stochastically inde-
pendent as well. Throughout this article we assume the variance parameter θ = (σ2, D) to be
known and the matrix D to be positive definite.
The likelihood of observations yi results in integral form in

L(β; yi, θ) := fYi(yi) =

∫

Rp

φYi|βi
(yi)φβi(βi)dβi,

where the influence of the parameters β and θ on the likelihood is contained in the normal
densities

φYi|βi
(yi) =

√
2πσ2

−mi
exp[− 1

2σ2
(yi − η(βi, ξi))

T (yi − η(βi, ξi))]

φβi(βi) =
√

2πσ2
−p√‖ D ‖ −1 exp[− 1

2σ2
(βi − β)TD−1(βi − β)],

with ‖ · ‖ denoting the determinant. For nonlinear response functions η, the likelihood function
cannot be written in a closed from. To circumvent this problem, the model is transformed by a
linearization of the response function as described by Retout and Mentré (2003). With a design
matrix defined as

Fβ :=
∂η(βi, ξi)

∂βTi
|βi=β

follows for a linearization in the true population mean β and under the assumption of negligible
linearization errors:

Yi = η(β, ξi) + Fβ(βi − β) + εi.

The distribution assumptions on βi and the observation error vector εi imply normally distributed
vectors of observations with heteroscedastic errors:

Yi ∼ N(η(β, ξi), σ
2[Imi + FβDF

T
β ]).
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Under the assumption of negligible linearization errors, a linear mixed effects model is obtained,
when alternatively linearizing the response function in some point β0:

Yi ∼ N(η(β0, ξi) + Fβ0(β − β0), σ2[Imi + Fβ0DF
T
β0 ]).

Both linearizations yield for linear response functions η the true linear mixed effects model, as
Fβ = Fβ0 is then independent of β. Note that the information matrices in heteroscedastic normal
and linear mixed effects models are distinct. The linearization in the true population mean under
the assumption of negligible linearization errors yields with Vβ := Imi + FβDF

T
β :

M1,β(ξi) :=
1

σ2
F Tβ V

−1
β Fβ +

1

2
S,

where S ≥ 0, with

Sj,k = tr [V −1β

∂Vβ
∂βj

V −1β

∂Vβ
∂βk

], j, k = 1, ..., p,

as approximation of the Fisher information, whereas the information resulting from a lineariza-
tion in a point β0 is of the form

M2,β(ξi) :=
1

σ2
F Tβ0V

−1
β0
Fβ0 ,

such that specially for β0 = β additional information is drawn by M1,β from the variance
structure of the observations. This difference in the information matrices was discussed by
Mielke and Schwabe (2010) in an example with the result that the additional matrix term S in
some situations might misleadingly generate information.

3 Approximation of the Fisher information

Alternatively the Fisher information can be directly computed as the covariance of the score
function. The score function is obtained as in Mielke (2011) by

∂l(β; yi, θ)

∂β
=

1

σ2
D−1(E(βi|Yi = yi)− β),

with the log-likelihood function l(β; yi, θ) := log(L(β; yi, θ)). The Fisher information can hence
be written in the form

Mβ(ξi) = E

(
∂l(β;Yi, θ)

∂β

∂l(β;Yi, θ)

∂βT

)

=
1

σ2
D−1 − 1

σ4
D−1E(V ar(βi|Yi))D−1,

since with the distributional assumptions on the individual parameter vector βi follows

V ar(βi) = E(V ar(βi|Yi)) + V ar(E(βi|Yi)) = σ2D,

such that apporixmations of the Fisher information result as approximations of the expectation of
the conditional variance. For limited numbers of possible experimental settings, small individual
sample sizes mi and low dimensional parameter vectors β, the Fisher information can then be
approximated using quadrature rules or Monte-Carlo methods. Generally the computational
burden for approximating the dependence of the Fisher information on the experimental settings
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will already for relatively small sample sizes and small dimensions of β be very high, such that
analytical approximations are of interest. Tierney and Kadane (1986) propose fully exponential
Laplace approximations for approximating posterior moments. Therefor a second order Taylor
approach in the minimizing argument β∗i of the penalized least squares term

l̃(βi; yi, β, θ) := (yi − η(βi, ξi))
T (yi − η(βi, ξi)) + (βi − β)TD−1(βi − β)

is applied for approximating the occurring integrals. The nonlinear response function η implies
a nonlinear dependence of the support point β∗i of the Taylor approach on the observation vector
yi, such that approximations of the expectation of the conditional variance cannot be obtained
without yet another level of approximations. Similarly Mielke (2011) suggests the approximation
of the conditional density of βi for given observation yi

fβi|Yi=yi(βi) :=
φYi|βi

(yi)φβi(βi)

fYi(yi)
(1)

by approximations to the denominator integral and an according approximation to the numerator
with a first order Taylor approach in the response function η. In dependence of the support point
β̂ of the Taylor approach, the resulting density is then approximated by a normal density:

βi|Yi=yi
app.∼ N(µ(yi, β̂i, β), σ2M−1

β̂i
), with

µ(yi, β̂i, β) := M−1
β̂i

(F T
β̂i

(yi − η(β̂i, ξi) + Fβ̂i β̂i) +D−1β) and

Mβ̂i
:= F T

β̂i
Fβ̂i +D−1.

The big benefit of this approach is that approximations of the Fisher information in nonlinear
mixed effects models can be directly deduced, as the approximation of the conditional variance
not necessarily depends on the observations yi. The Fisher information is in dependence of the
support point of β̂ with this approach approximated by

M2,β(ξi) :=
1

σ2
F T
β̂
V −1
β̂
Fβ̂,

what corresponds for β̂ = β0 to the linear mixed effects model approximation.

A more refined approximation of the information might however be obtained by taking the
distribution of the observations into account:

E(V ar(βi|Yi)) =

∫

Rmi

V ar(βi|Yi = yi)

∫

Rp

φYi|βi
(yi)φβi(βi)dβidyi

=

∫

Rp

∫

Rmi

V ar(βi|Yi = yi)φYi|βi
(yi)φβi(βi)dyidβi

≈
∫

Rp

σ2M−1βi
φβi(βi)dβi

= σ2E(M−1βi ).

where the approximation holds by the argument, that the solution of the penalized least squares
problem should be not too far located from the true individual parameter vector, which is here βi.
Note however, that for this approximation the existence of the expectation has to be guaranteed.
With similar transformations as for M2,β the Fisher information can then be approximated by

M3,β(ξi) :=
1

σ2
E(F TβiV

−1
βi
Fβi).

Unfortunately this approximation generally cannot be written in a closed form, such that the
expectation has to be calculated numerically. Note that the true Fisher information matrix is
obtained for all presented approximations in the case of linear response functions η.
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4 Design

The two stages of the mixed effects models carry forward to the design. Individual designs

ξi := (xi1, ..., ximi) with xij ∈ X

describe the experimental settings for individuals, whereas the population designs summarize the
proportions ωi of individual designs ξi in the population:

ζ := (ξ1, ..., ξk, ω1, ..., ωk) with ωi ≥ 0,

k−1∑

i=1

ωi ≤ 1 and ωk = 1−
k−1∑

i=1

ωi.

We here assume the numbers of observations per individual to be identical, such that mi = m
for all i = 1, ..., k. Population designs ζ can hence be interpreted as approximate designs on the
m-dimensional design space Xm. The normalized population Fisher information matrix is with
the independence of the observations of different individuals obtained as the weighted sum of the
individual information matrices:

Mpop,β(ζ) =
k∑

i=1

ωiMβ(ξi).

Target of the design optimization is the minimization of some real valued design criteria of the
information matrix Mpop,β with respect to populations designs ζ. We restrict ourselves in this
article to the D-optimality criterion:

ΦD(ζ) := − log(‖Mpop,β(ζ) ‖),

as the content of the confidence ellipsoid for β is inverse proportional to the determinant of
the information matrix. Results for other optimality criteria can be similarly deduced. The
design optimization and the verification of optimal designs can be conducted with applications of
Fedorov’s equivalence theorem for designs of experiments in the case of simultaneous observations
of several quantities (Fedorov (1972),p.211), yielding the sensitivity function

gζ(ξ) := tr [M−1pop,β(ζ)Mβ(ξ)].

For the estimation of the p dimensional parameter vector β, a design ζ∗ is hence D-optimal, if
and only if

gζ∗(ξ) ≤ p ∀ξ ∈ Xm

in the case of m observations per individual.

5 Example

We consider a one compartment model with first order absorption and the model structure as in
Schmelter (2007), but with one observation at the time xi ∈ X = [0.1, 24] per individual only:

Yi =
β1,i

β3,iβ1,i − β2,i
[exp(−β2,i

β3,i
xi)− exp(−β1,ixi)] exp(εi).

Numbers from some previous experiments were used for planning purposes for the population
location parameter:

β = (β1, β2, β3) = (0.61, 25, 88).
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The random individual effects are here considered to enter the individual parameter vectors
proportionally:

βj,i = βj exp(bj,i), j = 1, 2, 3 with (b1,i, b2,i, b3,i)
iid∼ N3(0, σ

2D),

with a known diagonal variance matrix D = diag(89.3, 12.5, 9.0) and the observation errors εi
are assumed to be normally distributed with a variance σ2 = 0.01. The model can then be easily
transformed in a nonlinear mixed effects model as introduced in the second section.

The optimal designs based on the approximations M1,β and M2,β were calculated with the use
of the equivalence theorem:

ζ∗1 =

(
(3.10) (5.18) (24.00)
0.61 0.08 0.31

)
for M1,β and

ζ∗2 =

(
(0.10) (4.18) (24.00)
0.33 0.33 0.33

)
for M2,β .

Simulations were applied in order to compute optimal designs for the approximationM3,β and for
the Fisher information Mβ and the dependences of the components of the information matrices
on the experimental settings were approximated by using polynomial splines. Based on these
approximations, the D-optimal designs:

ζ∗3 =

(
(2.85) (24.00)
0.59 0.41

)
for M3,β and

ζ∗F =

(
(2.32) (6.40) (24.00)
0.61 0.01 0.38

)
for Mβ

were obtained. The uniqueness of the D-optimal designs follows for the considered approxima-
tions with the structure of the sensitivity functions, which are illustrated in Figure1. Table 1

0 5 10 15 20

1.
5

2.
0

2.
5

3.
0

Time

S
en

si
tiv

ity

Figure 1: Sensitivity functions on the design region X = [0.1, 24].
Grey dashed: M1,β ; Grey solid: M2,β ; Black dashed: M3,β ; Black solid: Mβ .

shows the efficiency of the proposed designs for the different approximations. The efficiency of
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designs is here defined by the terms

δζ∗i (ζ) :=

( ‖Mi,β(ζ) ‖
‖Mi,β(ζ∗i ) ‖

) 1
3

, i = 1, 2, 3; and δζ∗F (ζ) :=

( ‖Mβ(ζ) ‖
‖Mβ(ζ∗F ) ‖

) 1
3

.

The efficiency of all proposed designs is in relation to the simulation based approximation of the
Fisher information relatively high. The similarity of the designs ζ∗F for the Fisher information
and ζ∗3 for the approximation M3,β causes the high efficiency of 0.95. The efficiency of designs
with respect to the often used linear mixed effects approximation M2,β of the Fisher information
is of special interest. The designs ζ∗1 , ζ∗3 and ζ∗F are here relatively inefficient, what might be
caused by the weights of the designs, and the missing observations on the left border of the design
space. Note that the number of support points of the design ζ∗3 is smaller than the number of
parameters of interest, such that the corresponding information matrix in terms of the linear
mixed effects approximation is singular. The additional information of the approximation M1,β

was mentioned by Mielke and Schwabe (2010) and can be seen in the here presented example as
well. The D-optimality criterion takes for the optimal design in the approximation M1,β with
respect to the different approximations the values

ΦD;1(ζ1) = 11.81 for M1,β; ΦD;2(ζ1) = 15.42 for M2,β;

ΦD;3(ζ1) = 13.81 for M3,β; ΦD;F (ζ1) = 14.77 for Mβ.

The information gain here takes place for the approximation M3,β as well, as the value of
the optimality criterion is smaller than the value given by the Fisher information, which is
approximated by the criterion ΦD;F (ζ1). In the present example, it can be even analytically
shown that the approximation M1,β suggests more information then the true Fisher information.

Table 1: Efficiency of the proposed designs
ζ∗1 ζ∗2 ζ∗3 ζ∗F

δζ∗1 1.00 0.55 0.95 0.77
δζ∗2 0.66 1.00 0.00 0.37
δζ∗3 0.98 0.84 1.00 0.98
δζ∗F 0.88 0.83 0.95 1.00

6 Discussion

Although some new motivations propose the use of the information matrix resulting from linear
mixed effects models for the design of experiments in nonlinear mixed effects models, the results
for specific situations can be unsatisfactory. Designs which are obtained by analytical approx-
imations of the Fisher information should be handled very carefully in the considered models,
if the target of the design problem is the minimization of some criteria related to the Fisher
information matrix. These designs can however be used as benchmarks or as starting points for
the location of designs based on numeric approximations of the Fisher information. Of special
interest is the optimization of designs with respect to the expected information M3,β . Pinheiro
and Bates (2000) suggest a similar structure of the inverse of the covariance matrix for estimators
of β, which are based on penalized sums of squares, such that the optimization of designs with
respect to the information matrix M3,β might improve the quality of estimates not only theoret-
ically. The presented example unfortunately showed that designs with less support points than
parameters of interest might result with this information matrix as optimal designs, what might
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however cause new problems for the estimation. A second problem for the approximation M3,β

was the value of the optimality criterion, which was in the example below the bound provided
by the approximated Fisher information. These points require some further investigations.
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A Comparison between D-optimality for Poisson Regression with
Random Intercept and Poisson Regression with Random Slope

Mehrdad Niaparast1∗
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Abstract: In spite of wide applications of models with random effects, there are
few studies have been investigating the optimal designs for these kinds of models.
Optimal designs, which can significantly enhance the perfor- mance of the models,
have received increasing attention recently.In this paper, we use Quasi-likelihood
approach to obtain the optimal designs for two particular categories of Poisson re-
gression models: 1) Poisson Regression models with random Intercept; 2) Poisson
Regression model with random slope. Then we empirically study the efficiency of the
pro- posed optimal designs.
This work provides a framework to obtain optimal designs when the variance covari-
ance structure of the model is a function of the mean of the observations.

Keywords: Poisson regression, Optimal designs, D-optimality, Random effect, D-
efficiency.

1 Introduction

There are many kind of count data in real experiments which can not modelled by a normal
distribution. These data might be modelled by a Poisson Model which associates with some
parameters through link function. Due to the different races, different age, etc these parameters
might be changed for different individuals and hence we have random effects in the model.
Design optimality has received growing attention by statisticians over the past few decades.The
main goal is to find the best experimental settings xi, which maximize the information matrix of
parameters as the inverse of variance-covariance matrix. A lot of work has been done on optimal
experimental designs for binary data models and count data models in the fixed effect cases as
two special cases of generalized linear models. Representative work has been done by Abdelbasit
and Plackett (1983), Minkin (1987), Minkin (1993) and Yanping et al. (2006).
While the corresponding statistical analysis is well-developed for mixed effects Poisson regression
models as an especial case of generalized linear mixed models, only a few results are available
on optimal designs for such models.Recently Niaparast (2009) has investigated a general method
to find optimal designs for the Poisson regression model with random intercept. He obtained
the locally D-optimality designs for this model. An assumption in this model is that the effect
of the explanatory variable is constant. This assumption might sometimes be in challenge. On
the contrary of a random intercept model, random slope model allows the explanatory variable
to have a different effect for each individual. In this paper we consider, as an especial case of
generalized linear mixed models, Poisson regression model with random slope.
Due to the random effect in this model, a closed form of the likelihood function to estimate the
fixed parameters of this model is quite intractable. So a Quasi-Likelihood approach is used to
determine the information matrix for these parameters (McCullagh and Nelder (1989), chapter
9). The only assumptions on the data are those concerning the first two moments.
The outline of the paper is as follows: In the next section, we introduce the model. In section 3
we provide a short introduction to Quasi-likelihood method. In sections 4 and 5 we define two
special cases and we obtain some results. Finally we outline a summary of this paper.
∗Corresponding author: niaparast@razi.ac.ir
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2 The Model

We consider a mixed Poisson regression model. It can be written as,

Yijk | bi ind∼ P (µij(bi))





i = 1, . . . , s
j = 1, . . . , ti
k = 1, . . . ,mij

ti∑
j=1

mij = mi

n =
s∑
i=1

mi

(1)

where log(µij(bi)) = fT (xij)bi is specified by a canonical link function. Here Yijk stands for the
kth replication for the individual i at the experimental setting xij from the experimental region
X = [0, g] and can tend to infinity. Also we suppose that mij denotes the number of replications
of individual i at the jth level of x. bi is the random slope which varies and depends on the
different individuals. We suppose that bi is normally distributed with mean β and variance

Σ =

(
σ20 0
0 σ2

)
.

We suppose that cov(bi,bi′) = 0 for all i 6= i′. Note that V ar(Yijk | bi) = E(Yijk | bi) = µij(bi).
For further simplification we assume ti = t and mi = m ∀i.
We consider two special cases of the mixed Poisson regression model which are called Poisson
regression model with random intercept(PRI) and Poisson regression model with random slope
(PRS).

3 Quasi-information

The role played by the information matrix is very clear in the optimal design studies. This role
seems apparent comes from the asymptotic relation between information matrix and variance-
covariance matrix of the maximum likelihood estimator of parameters.
Suppose the n × 1 random variable Y has mean E(Y) = µ(β) and variance-covariance matrix
V ar(Y) = φ2V (µ(β)) such that the variance depends on β only through the mean µ(β) where
V (µ) is the variance function and shows the relation between the mean and the variance of Y
(McCulloch and Searle 2001). Both are assumed to be known functions of the p-dimensional
parameter vector β and V (β) is positive definite.
The quasi-likelihood approach for the regression parameters β is defined by the quasi-score
function

U(β,y) = φ2DT (V (µ(β)))−1(y − µ(β))

β̂
(n)

is the quasi estimator for β if U(β̂
(n)
,y) = 0.

In this expression the entries of the matrix D, of order n×p, areDjr =
∂µj
∂βr

, the partial derivatives
of the components of µ(β), with respect to the parameters. Note that D also depends on β.
Under the regularity conditions on the design, the asymptotic variance-covariance of the quasi-
score function U(β,Y), which equals the negative of the expectation of ∂U(β,Y)/∂β , is

M(β) = DT (V (µ(β)))−1D

(McCullagh 1983). This matrix plays the role of the Fisher information exactly in the same
way as in fully parametric inference, and under the usual regularity conditions, the asymptotic
variance-covariance matrix of the quasi-likelihood estimator of β equals M−1(β) (McCullagh
1983). For the sake of clarity we call M(β) the quasi-information matrix.
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4 PRI Model

Suppose that µij(bi) = eb0i+β1xij in (1),i.e. σ2 = 0. This model has been considered by Nia-

parast(2009) and hence we outline his results. Suppose that ξi =

{
xi1 . . . xit
pi1 . . . pit

}
be the

approximate design for individual i.

• Expectation and Variance-Covariance Structure

E(Yijk) = µ(xij) = eβ0+β1xijk+
1
2
σ2
0

V ar(Yijk) = µ2(xij)(e
σ2
0 − 1) + µ(xij)

Cov(Yijk, Yij′k′) = (eσ
2
0 − 1)µ(xij)µ(xij′) for all (j, k) 6= (j′, k′)

we suppose that µ(xij) is an increasing function of xij

• The Quasi-information matrix to estimate β can be written as

Mβ(ξi) = F Ti (A−1i + (eσ
2
0 − 1)1ti1

T
ti)
−1Fi (2)

where Ai = diag{mijµ(xij)}j=1,··· ,t, Fi =



fT (xi1)

...
fT (xit)


, the row individual design matrix

neglecting the number of replications and 1t is an t× 1 vector with all entries equal to 1.

• Optimal design can be obtained among those which are uniform across the individuals
(Niaparast 2009). Thus we ignore index i.

• D-optimal design to estimate β has exactly two different support points.

• The D-criterion can be written as

det(Mβ(ξ)) ∝ p(1− p)µ̃1µ̃2(ln(µ̃1)− ln(µ̃2))
2

1 +meβ0+
1
2
σ2
0 (eσ2 − 1)(pµ̃1 + (1− p)µ̃2)

(3)

where µ̃j =
µ(xj)
µ(0) is canonical standardized mean.

Regarding to the above statements we obtain D-optimal designs for some representative values
of β0, β1 and σ20, which are listed in table 1.

Table 1: Locally D-optimal two points designs for PRI Model
unrestricted design domain restricted design domain µ̃(g) = .2

m = 100, β0 = −2 and β1 = −5 m = 200, β0 = −2 and β1 = −5
σ20 p∗ µ̃∗1 µ̃∗2 p∗ µ̃∗1 µ̃∗2
0 0.500 0.1353 1 0.500 0.2000 1
0.5 0.7799 0.0782 1 0.6906 0.2000 1
1 0.7815 0.0777 1 0.6908 0.2000 1
2 0.7821 0.0776 1 0.6910 0.2000 1
3 0.7822 0.0775 1 0.6910 0.2000 1
4 0.7822 0.00775 1 0.6910 0.2000 1
5 0.7822 0.7755 1 0.6911 0.2000 1
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Experimenters might consider a standard two points design which consists of the two end-
points, i.e. µ̃1 = µ̃g and µ̃2 = 1 with equal allocation, i.e. p1 = p2 = 1

2 . If we define the
D-efficiency of ξ as

D-efficiency =

(
det(V ar(β̂ξ∗))

det(V ar(β̂ξ))

) 1
2

The plots in figure 1 indicate that the efficiency of standard design increases when the design
regions are more restricted.

Figure 1: D-efficiency of Standard Designs for PRI Model

5 PRS Model

We consider model in the equation (1), if σ20 = 0 then Model is reduced to Poisson regression
with random slope. In other word µij(bi) = eβ0+b1ixij . We conclude the following statements:

• Expectation and Variance-Covariance Structure

E(Yijk) = µ(xij) = eβ0+β1xijk+
1
2
σ2x2ij (4)

V ar(Yijk) = µ2(xij)(e
σ2x2ij − 1) + µ(xij) (5)

Cov(Yijk, Yij′k′) = (eσ
2xijxij′ − 1)µ(xij)µ(xij′) for all (j, k) 6= (j′, k′) (6)

• If ξ =

{
x1 x2
p 1− p

}
, then the Quasi-information matrix is

Mβ(ξi) = F T (A−1 +B)−1F (7)

where B =

(
eσ

2x21 − 1 eσ
2x1x2 − 1

eσ
2x1x2 − 1 eσ

2x22 − 1

)
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• the determinant of the quasi-information matrix for β is as follows

det(M(ξ))

=
m2µ(0)2p1(1− p1)µ̃(x1)µ̃(x2)(x1 − x2)

2

1 +mp1µ(0)µ̃(x1)(eσ
2x21 − 1) +m(1− p1)µ(0)µ̃(x2)(eσ

2x22 − 1) +m2p1(1− p1)µ(0)2µ̃(x1)µ̃(x2)(eσ
2x1x2 − 1)

where µ0 = eβ0 .

To obtain the locally D-optimal designs for some representative values of parameters we maximize
det(M(ξ)) and the results are listed in table 2

Table 2: Locally D-optimal two points designs for PRS Model
unrestricted design domain restricted design domain µ̃(g) = .2

m = 100, β0 = −2 and β1 = −5 m = 200, β0 = −2 and β1 = −5
σ2 p∗ µ̃∗1 µ̃∗2 p∗ µ̃∗1 µ̃∗2
0 0.500 0.1353 1 0.500 0.2000 1
0.5 0.482 0.1305 1 0.483 0.2000 1
1 0.462 0.1272 1 0.466 0.2000 1
2 0.422 0.1296 1 0.432 0.2000 1
3 0.384 0.1487 1 0.398 0.2000 1
4 0.354 0.1798 1 0.362 0.2000 1
5 0.331 0.2147 1 0.331 0.2147 1

Figure 2: D-efficiency of Standard Designs for PRS Model

6 Summary

• Due to the random effects we could not use a likelihood method to find the information
matrix and hence we apply a Quasi-likelihood approach. Using this method we obtain the
Quasi-information matrix for β.

• Results indicates that we have different structure of the Quasi-information matrix for β.
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• Numerical method use to maximize the determinants of the quasi-information matrices.
and the results in tables 1 and 2 are completely different. In the PRI Model, the interval
between two support points increases when σ2 increases, but we have the different trend
in the PRS model.

• Figures 1 and 2 indicate that both cases are not robust when g tends to infinity.
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Optimal Designs for Individual Prediction
in Random Coefficient Regression Models
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Abstract: In this note we present optimal designs for the estimation of the indi-
vidual response (“prediction”) for the participates in a study within the framework
of hierarchical linear mixed models. These optimal designs may differ substantially
from those propagated in the literature so far.

Keywords: Linear Mixed Model, Random Coefficient Regression, Prediction, Indi-
vidual Design.

1 Introduction

Random coefficient regression models attract an increasing popularity in many fields of appli-
cations starting from animal breeding over population pharmacokinetics to the development of
individualized medicine. In random coefficient regression models interest may be either in a
“typical” response described by some averaged characteristics of the population (estimation of
the population parameters) or in the individual responses of the subjects involved in the study
themselves (estimation of the individual parameters, “prediction”). The statistical analysis of
such models has become tractable during the last years by the now available computer facili-
ties, which pushes this field forward. However, less has been done in optimal design for such
experiments. In the present note we want to develop optimal designs for the estimation of the
individual response.

In their seminal paper Gladitz and Pilz (1982) established that Bayesian optimal designs
are optimal for the estimation of individual responses, when the prior covariance is set equal to
the covariance of the individual parameters, in the case of known population parameters, i. e. in
the case of the knowledge of the “typical” response. Subsequently this last condition of known
population parameters has been often overlooked, which resulted in some kind of “folklore” in
the design community that all design problems have been solved related to linear mixed models.
Some years later Fedorov and Hackl (1997) (section 5.2) considered design criteria for either the
estimation of the population parameters or the estimation (prediction) of the individual responses
under various assumptions on the knowledge of parts of the parameters. For the situation of
prediction, when the population parameters are unknown, they claim that the optimal design
in the corresponding model without random effects retains its optimality for the estimation of
the individual parameters. This statement seems to be motivated by a conditional approach, in
which the individual response is estimated by the observations of the corresponding individual
only, neglecting the fact that the individual effects are assumed to be random and stem from a
common population. As often the truth lies somewhere in between: As will be developed in this
note the correct characterization of the mean squared error for the prediction of the individual
response results in a compound criterion, which is a weighted average of the fully Bayesian
criterion and the criterion related to the model without random effects.

The present paper is organized as follows: In the second section we specify the model, intro-
duce the predictor for the individual random parameters and develop the corresponding mean
squared error matrix. The third section provides some theoretical results for the determination of
∗Maryna Prus: maryna.prus@ovgu.de
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designs, which are optimal for prediction. In section 4 we illustrate these results by the example
of simple straight line regression and conclude with some discussion in section 5.

2 Model Specification and Prediction

In random coefficient regression the observations are assumed to come from a hierarchical model.
On the individual level the jth observation Yij of individual i is given by

Yij = f(xij)
>βi + εij (1)

for j = 1, ..,mi and i = 1, .., n, where mi is the number of observations at individual i, n
is the number of individuals, f = (f1, .., fp)

> is a set of known regression functions, and the
experimental settings xij may come from the experimental region X . The observational errors
εij are assumed to be homoscedastic and uncorrelated with mean 0 and common variance σ2 > 0.

On the population level the individual parameters βi = (βi1, .., βip)
> are assumed to come

from common distribution with unknown population mean E (βi) = β = (β1, .., βp)
> and a p×p

population covariance matrix Cov (βi) = σ2D. Moreover, all individual parameters βi and all
observational errors εi′j are assumed to be uncorrelated.

To simplify the notations we will only consider random coefficient regression models through-
out this note, in which all individuals get the same experimental treatments, i. e. all individuals
i have the same number mi = m of observations at the same experimental settings xij = xj .

To make use of the theoretical results available for the estimation of individual parameters
(prediction) we will identify the above specified model as a special case of the general mixed
model

Y = Xβ + Zγ + ε (2)

with a particular nice structure of the fixed effects and random effects design matrices X and
Z, respectively. Here β denotes again the fixed effect (population parameter), and γ are the
random effects. These random effects and the observational errors ε have zero mean and are all
uncorrelated with corresponding full rank covariance matrices Cov (γ) = G and Cov (ε) = R,
respectively.

Under the assumption of Gaussian normal distributions Henderson et al. (1959) established
that the mixed model equations produce the Best Linear Unbiased Estimator β̂ and the Best
Linear Unbiased Predictor γ̂ for β and γ by

(
β̂
γ̂

)
=

(
X>R−1X X>R−1Z
Z>R−1X Z>R−1Z + G−1

)−1(
X>R−1Y
Z>R−1Y

)
, (3)

if the fixed effects design matrix X has full column rank. According to Christensen (2002) the
distributional assumptions can be relaxed to the moment conditions stated above.

Denote by

C =

(
C11 C12

C>12 C22

)
= Cov

(
β̂

γ̂ − γ

)
(4)

the joint mean squared error matrix for both β̂ and γ̂, which is partitioned according to these
components. Then Henderson (1975) has shown that

C =

(
X>R−1X X>R−1Z
Z>R−1X Z>R−1Z + G−1

)−1
. (5)

We now adapt our model (1) to the more general model (2). First we introduce the centered
random effects bi := βi − β . Then a single observation in model (1) can be written as

Yij = f(xj)
>β + f(xj)

>bi + εij , (6)
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where the random effects are separated from the population mean. This results in the vector
notation

Yi = Fβ + Fbi + εi, (7)

for all observations Yi = (Yi1, ..., Yim)> of individual i, where εi = (εi1, ..., εim)> denotes the
corresponding error vector and F = (f(x1), ..., f(xm))> is the individual design matrix, which
coincides for all individuals under the assumptions made.

Finally, the complete observation vector Y = (Y>1 , ...,Y
>
n )> for all individuals has the form

Y = (1n ⊗ F)β + (In ⊗ F)b + ε, (8)

where ε = (ε>1 , ..., ε
>
n )> is the vector of all observational errors and b = (b>1 , ...,b

>
n )> is the

common vector of random effects. Here In is the n × n identity matrix, 1n = (1, .., 1)> is
a n-dimensional vector with all entries equal to 1, and “⊗” denotes the Kronecker product.
Hence, model (8) attains the form of the general model (2). However, the covariance matrix
Cov (b) = σ2In⊗D may fail to be of full rank, if the population covariance matrix D is singular,
which is the case for example for models with random intercepts (random block effects).

Therefore we have to rewrite the model (8) by reducing the dimensionality of the random
effects such that the corresponding covariance matrix becomes regular: Let q be the rank of the
matrix D. Then there exists a p × q matrix H with D = HH> and rank (H) = q such that
H>H is regular. Then we introduce the random variables

ci := (H>H)−1H>bi , (9)

which satisfy E (ci) = 0, Cov (ci) = σ2Iq, and bi = Hci almost surely. The model equation (7)
can then be written as

Yi = Fβ + FHci + εi , (10)

and consequently
Y = (1n ⊗ F)β + (In ⊗ (FH))c + ε , (11)

where c = (c>1 , .., c
>
n )>. Now with X = 1n ⊗ F, Z = In ⊗ (FH) and γ = c our model (11) has

the form of the general model (2) with regular covariance matrices R = σ2Inm and G = σ2Inq.
In this model the blocks of the mean squared error matrix C can be readily calculated as

C11 = Cov(β̂) =
σ2

n

(
(F>F)−1 + HH>

)
, (12)

C22 = Cov(ĉ− c) = σ2
(

1

n
1n1

>
n ⊗ Iq + (In −

1

n
1n1

>
n )⊗ (H>F>FH + Iq)

−1
)
, (13)

C12 = cov(β̂, ĉ− c) = −σ
2

n
1>n ⊗H . (14)

Note that in the present case of identical design matrices F for all individuals the estimator
β̂ for the population parameter β can be calculated as the ordinary least squares estimator
β̂ = (F>F)−1F>Ȳ, where Ȳ = 1

n

∑n
i=1 Yi is the averaged response across the individuals.

The estimator β̂ for the population parameter β can also be rewritten as the average β̂ =
1
n

∑n
i=1 β̂i;ind of the individualized estimates β̂i;ind = (F>F)−1F>Yi of the individual parameters

βi based on the observations Yi of subject i only (see Entholzner et al. (2005)).
Also the predictor β̂i = β̂ + b̂i = β̂ + Hĉi for the individual parameter βi simplifies in this

situation.

Theorem 1. In the case of identical design matrices F for all individuals the predictor

β̂i = D((F>F)−1 + D)−1β̂i;ind + (F>F)−1((F>F)−1 + D)−1β̂, (15)
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is a weighted average of the individualized estimate β̂i;ind based on the observations of subject i
only and the estimator β̂ for the population parameter.

Consequently the corresponding covariance matrix of


β̂1 − β1

...
β̂n − βn


 = (1n ⊗ Ip | In ⊗H)

(
β̂

ĉ− c

)
, (16)

is independent of the choice of H.

Theorem 2.

Cov



β̂1 − β1

...
β̂n − βn




= σ2
((

In −
1

n
1n1

>
n

)
⊗
(
D−D((F>F)−1 + D)−1D

)
+

1

n
1n1

>
n ⊗ (F>F)−1

)
. (17)

If the dispersion matrix D is regular, the mean squared error matrix for the predictors
(β̂
>
1 , ..., β̂

>
n )> simplifies to a weighted average of the covariance matrix σ2(F>F)−1 for the

fixed effects in the model without random effects (D = 0) and the Bayesian covariance ma-
trix σ2(F>F + D−1)−1 propagated by Gladitz and Pilz (1982).

Corollary 1. If D is regular, then

Cov



β̂1 − β1

...
β̂n − βn


 = σ2

((
In −

1

n
1n1

>
n

)
⊗ (F>F + D−1)−1 +

1

n

(
1n1

>
n

)
⊗ (F>F)−1

)
. (18)

3 Optimal Design

The performance of the prediction may be measured in terms of the mean squared error matrix
derived in Theorem 2 and Corollary 1 and its quality depends on the design of the experiment,
i. e. on the choice of the experimental settings x1, ..., xm for each individual. These experimental
settings need not be distinct. As the performance does not depend on the order of the observa-
tions within the individuals, we may rewrite the mean squared error matrix of the predictor in
terms of distinct settings x1, ..., xk, say, and their respective numbers m1, ...,mk of replications

(
∑k

j=1mj = m). The standardized individual design ξ =

(
x1, ..., xk
w1, ..., wk

)
is then introduced,

where xj are the distinct settings and wj =
mj

m the corresponding relative frequencies of replica-
tions, respectively, satisfying

∑k
j=1wj = 1. For such a standardized design ξ we denote by

M(ξ) :=
k∑

j=1

wjf(xj)f(xj)
> =

1

m
F>F (19)

the standardized information matrix in the model without random effects. Further let ∆ = mD
be a standardized version of the dispersion matrix for the random effects.
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In the present paper we will lay emphasis on the Integrated Mean Squared Error (“IMSE”)
criterion

IMSEpred(ξ) :=

∫
Eξ

(
n∑

i=1

(µ̂i(x)− µi(x))2
)
ν(dx) =

n∑

i=1

∫
Covξ (µ̂i(x)− µi(x)) ν(dx) (20)

for prediction, which measures the average distance of the predicted individual response µ̂i(x) =
f(x)>β̂i from the true individual response µi(x) = f(x)>βi. Eξ and Covξ denote the expectation
and the covariance matrix, when the design ξ is used and ν is a weight distribution on the design
region X , which is typically uniform on X with ν(X ) = 1.

After some rearrangements it can be seen that the IMSE-criterion for prediction is linear,
and by Theorem 2 it follows that

IMSEpred(ξ) =
σ2

m
tr
((

M(ξ)−1 + (n− 1)
(
∆−∆(M(ξ)−1 + ∆)−1∆

))
V
)
, (21)

where V :=
∫

f(x)f(x)>ν(dx) is the “information matrix” for the weight distribution ν in the
model without random effects and “tr” denotes the trace of a matrix.

For a regular dispersion matrix D the criterion (21) simplifies by Corollary 1 to

IMSEpred(ξ) =
σ2

m
tr
((

M(ξ)−1 + (n− 1)(M(ξ) + ∆−1)−1
)
V
)
, (22)

which is proportional to a weighted average of the IMSE-criterion (M(ξ)−1V) in the model
without random effects and the corresponding Bayesian IMSE-criterion tr

(
(M(ξ) + ∆−1)−1V

)
.

Hence the IMSE-criterion for prediction can be interpreted as a compound criterion, which
could equivalently be identified with a certain constrained criterion according to Cook and Wong
(1994).

If we allow for approximate designs in the sense of Kiefer (1974), then a standard equivalence
theorem can be obtained, which characterizes the IMSE-optimal design, which minimizes the
IMSE-criterion.

Theorem 3. The approximate design ξ∗ is IMSE-optimal for prediction, if and only if

(n− 1) f(x)>M(ξ∗)−1
(
M(ξ∗)−1 + ∆

)−1
∆V∆

(
M(ξ∗)−1 + ∆

)−1
M(ξ∗)−1f(x)

+ f(x)>M(ξ∗)−1VM(ξ∗)−1f(x) (23)

≤ (n− 1) tr
(

∆
(
M(ξ∗)−1 + ∆

)−1
M(ξ∗)−1

(
M(ξ∗)−1 + ∆

)−1
∆V

)
+ tr

(
M(ξ∗)−1V

)

for all x ∈ X . Moreover, for any support point xj of ξ∗ with positive weight (wj = ξ∗(xj) > 0)
equality holds in (23).

For regular dispersion matrices D condition (23) of Theorem 3 simplifies.

Corollary 2. If D is regular, the approximate design ξ∗ is IMSE-optimal for prediction if and
only if

f(x)>
(

(n− 1)(M(ξ∗) + ∆−1)−1V(M(ξ∗) + ∆−1)−1 + M(ξ∗)−1VM(ξ∗)−1
)

f(x)

≤ tr
((

(n− 1)(M(ξ∗) + ∆−1)−1M(ξ∗)(M(ξ∗) + ∆−1)−1 + M(ξ∗)−1
)

V
)

(24)

for all x ∈ X . Moreover, for any support point xj of ξ∗ with positive weight (wj = ξ∗(xj) > 0)
equality holds in (24).
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Remark 1. Consider the special case of random intercepts (random block effects). There
an explicit individual specific constant term is included, f1(x) ≡ 1, say. The dispersion matrix
D = d1e1e

>
1 has rank one, where e>1 = (1, 0, ..., 0) is the first unit vector of length p. In this

situation the IMSE-criterion

IMSEpred(ξ) = σ2
(

1

m
tr
(
M(ξ)−1V

)
+

(n− 1)d1
1 +md1

ν(X )

)
, (25)

depends on the dispersion matrix only through an additive constant. Hence, the IMSE-optimal
design in the fixed effects model remains IMSE-optimal for prediction in the random intercepts
model.

4 Example: Straight Line Regression

For illustrative purposes we consider here the model

Yij = βi1 + βi2xj + εij , (26)

of a straight line regression on the experimental region X = [0, 1]. The experimental setting xj
may be considered as a dosage and xj = 0 yields an observation at baseline.

In the case of no random effects it is well-known that the IMSE-optimal design assigns half
of the observations to the baseline and half of the observations to the maximal dose. According
to Remark 1 this design retains its optimality for prediction in the case of random intercepts
βi1. However, this does not remain true, if we allow for random slopes βi2. To keep calculations
simple we assume that only the slope is random, i. e. βi1 ≡ β1 and D = d2e2e

>
2 . In view of

the equivalence theorem (Theorem 1) the IMSE-optimal design ξ∗ takes only observations at the

baseline (x = 0) and at the highest dose (x = 1) and has hence the form ξ∗ =

(
0 1

1− w∗ w∗

)
,

where only the optimal weight w∗ at x = 1 has to be determined.
For numerical calculations we assume a sample size of n = 100 individuals and an intra-

individual sample size of m = 10 observations per subject. For these numbers the optimal
weight w∗ is depicted in Figure 4 in dependence on the “intra-class correlation” ρ = d2/(1 + d2)
at x = 1. Here and in the following figure ρ is chosen instead of d2 on the horizontal axis to
cover the whole range of variances d2 in a finite interval (0 ≤ ρ ≤ 1). The optimal weight w∗

increases in d2 from w∗ = 0.50 for d2 = 0 (ρ = 0, no random effects) to w∗ ≈ 0.91 for d2 → ∞
(ρ = 1).

To see, what may be gained by using the optimal design for prediction, we have plotted the
efficiency of the IMSE-optimal design in the fixed effects model, which assigns equal weights
w = 1/2 to both the baseline x = 0 and the maximal dose x = 1, for varying dispersions d2 in
Figure 4. Of course, for d2 = 0 (ρ = 0, no random effects) the efficiency equals 1. The efficiency
decreases, as the dispersion d2 increases, with a limiting value 0.60 for d2 →∞ (ρ = 1).

These pictures do not change much, if we introduce additionally a random intercept with
small dispersion d1, which makes D regular. The Bayes-optimal design in this situation, which
minimizes tr

(
(F>F + D−1)−1

)
, assigns all observations to the maximal dose x = 1 and does,

hence, not allow for prediction, as the fixed effects information F>F is singular. Consequently
in this situation the efficiency of the Bayes-optimal design equals zero.

5 Discussion and Conclusions

In the present note we develop the mean squared error for the estimation (prediction) of the
individual responses as a performance characteristic of the design of an experiment. The resulting
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Figure 1: Optimal weight w∗ in de-
pendence of the variance parameter
ρ = d2/(1 + d2)

Figure 2: Efficiency of the equi-repli-
cated design (w = 1

2) in dependence of
the variance parameter ρ = d2/(1 + d2)

objective function is a compromise between the Bayesian and the standard fixed effects objective
function proposed so far and accounts for both the information from the observations within an
individual as well as the information obtained from the other subjects within the population. In
particular, the Bayesian criterion, which in a way neglects the intra-individual information and
takes the population information for granted, may lead to useless designs, which do not allow
for the estimation of the quantities of interest. As a specific design criterion under investigation
we use here the integrated mean squared error for approximating the individual response curves
over the whole design region, which is a quite natural choice. For this criterion we derive some
characterizations of optimal designs, which may substantially differ from the competing designs
obtained by maximizing the corresponding Bayesian or standard criteria. As a by-product we
obtain that in the particular case of random intercepts the standard optimal designs retain
their optimality. For computational ease we only considered approximate individual designs,
which might be criticized, as typically sample sizes within individuals will be small. However
these optimal approximate designs may serve well as a benchmark for candidate designs, which
themselves can be derived from the optimal approximate designs by intelligent rounding. But
this goes beyond the scope of the present paper. Finally we illustrate the dependence of the
optimal design on the dispersion parameters as well as the efficiency of the competing designs by
a simple example. This gives rise to the problem that the obtained optimal designs are only locally
optimal for a specific dispersion. Robustness and sensitivity with respect to the dispersion should
be investigated in the future and potentially more robust designs should be developed, which
are maximin efficient or optimal with respect to some weighted (“pseudo Bayesian”) criterion.
Furthermore, it is to be expected that the qualitative results obtained here will carry over to
other design criteria, which will be object of further investigations.
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On optimal space-time excitation structures for parameter
estimation in linear partial differential equations
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Abstract: The problem of D-optimal input signals selection for parameter estimation
in systems described by partial differential equations (PDE) is considered. In opposite
to earlier results, the time-domain synthesis of input signals is discussed. In addition
to the optimality conditions, the time-space structure of optimal input signals is
derived and approximate explicit solutions are obtained for systems described by the
parabolic and the hyperbolic PDE’s.
Keywords: D-optimal input signals, parameter estimation, distributed-parameter
systems.

1 Introduction

The problems of parameter estimation or identification in systems described by PDE’s were
considered in many papers, see Banks and Kunisch (1989), Banks and Kojima (1988), Chavent
and Kunisch (2002), Uci nski (2005), Fleming and Moheimani (2003), Ito and Kunisch (1997),
Kunisch and Nakagiri (1995), Kunisch (1988), Pierce (1979), Rafajłowicz (1984), Rafajłowicz
(2000), among others. In this context the problem of sensors’ allocation also received much
attention, see Rafajłowicz (1978), Rafajłowicz (1981), Rafajłowicz (1987), Uci nski (2000) and
interesting results on moving sensors trajectories, which are contained in Uci nski (2005).

Much less is known on optimal input signals selected for increasing the accuracy of parameter
estimation in PDE’s. Several results in this direction can be found in Rafajłowicz (1983),
Rafajłowicz (1985), Rafajłowicz (1986), where mainly the so called frequency-domain synthesis
is discussed. Partial results on the time-domain synthesis can be found in Rafajłowicz (1989).
Our aim in this paper is to develop further this approach and to attain (almost) explicit solutions
for important classes of PDE’s. In more details, our aims include:

• providing a brief introduction to the time-domain method of selecting input signals for
linear, time-invariant (LTI) dynamic systems, described by ODE’s,

• indicating that new technologies of sensing and actuating in space and time can lead to
new (sometimes easier) problems of input signal selection.

• discussing a new method of generating well-distributed points using space-filling curves as
a way of approximating observations at every spatial point.

• focusing on input signals for parameter estimation in LTI systems with spatio-temporal
dynamics.

• illustrating an interplay between spatial and time domain structure of optimal input signals,

• comparing the results obtained here with those that were presented by the first author
at the Isaac Newton Institute for Mathematical Sciences, Cambridge University, UK, July
2011, that were obtained in the space-frequency domain (under different constraints),

∗Corresponding author: ewaryst.rafajlowicz@pwr.wroc.pl
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2 Time domain approach to optimal input signal for ODE pa-
rameter estimation

We confine to the class of systems to LTI systems, described by Green’s function of an ordinary
differential equation (ODE) with constant parameters. Observations are made at every t ∈ (0, T )
(the theory conveys to equidistant discrete-time observations, but formulas are less transparent).
We assume that there is no feedback, i.e., input signals generated in an open loop – typical when
our aim is to estimate parameters of our system, e.g. material constants.

System. Consider LTI system described by ODE

dr y(t)

d tr
+ ar−1

dr−1 y(t)

d tr−1
+ . . .+ a0 y(t) = ar u(t), (1)

t ∈ [0, T ] with zero initial conditions (for simplicity), where T – the horizon of observations, y(t)
is the output, u(t) is the input.

The solution y(t; ā) of (1) depends on the vector ā = [a0, a1, . . . , ar]
tr of unknown parame-

ters, where tr is the transposition.
Observations. Available observations:

Y (t) = y(t; ā) + ε(t), t ∈ [0, T ], (2)

where ε(t) is zero mean, uncorrelated, Gaussian "white noise", more precisely, ε(t) is implicitly
defined by:

dW (t) = ε(t) dt, (3)

where W (t) is the Wiener process.
It can be shown (Goodwin, Payne 70’) that the Fisher information matrix (FIM) MT (u) for

estimating ā from (2) has the form:

MT (u) =

∫ T

0
∇ay(t; ā) (∇ay(t; ā))tr dt (4)

and from the Cramer-Rao inequality we know that for any estimator ã of ā we have:

cov(ã) ≥M−1
T (u). (5)

For LSQ estimator the equality in (5) is asymptotically attained. Thus, it is meaningful to
minimize interpretable functions of M−1

T (u), e.g., minDet[M−1
T (u)] w.r.t. u(.), under certain

constraints on u(.). Later, we admit: U def
=
{
u :
∫ T

0 u2(t) dt ≤ 1
}
.

Nonconvexity of FIM. The problem minu∈U Det[M
−1
T (u)] is not convex w.r.t. u(.). Indeed,

the sign ︸︷︷︸ in the formula below indicates the reason:

MT (u) =

∫ T

0

∫ T

0
H(τ, ν; ā) u(τ)u(ν)︸ ︷︷ ︸, dτ dν, (6)

H(τ, ν; ā)
def
=

∫ T

0
k̄(t− τ ; ā) k̄tr(t− ν; ā) dt, (7)

where r × 1 vector of sensitivities k̄(t; ā)
def
= ∇ag(t; ā), is defined through the impulse response

(Green’s function) of ODE (1), denoted later by g(t; ā). Note that g(t; ā) = 0, t < 0.
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Embedding. As a remedy to the fact that MT (u) is not linear in u, we propose the em-
bedding of the initial problem the problem into a larger class of problems with the following
matrix:

Mext(w) =

∫ T

0

∫ T

0
H(τ, ν; ā)w(τ, ν) dτ dν. (8)

Note that if w(τ, ν) = u(τ)u(ν), then Mext(w) = MT (u). We also define set W as follows:

W = convex hull {w(τ, ν) = u(τ)u(ν) : u ∈ U} . (9)

Note: w ∈ W iff for certain I and αi ≥ 0,

w(τ, ν) =
I∑

i=1

αi ui(τ)ui(ν),
I∑

i=1

αi = 1. (10)

Lemma 1 If H(τ, ν; ā) continuous in (τ, ν) ∈ [0, T ]2, then the set M def
= {Mext(w) : w ∈ W}

is convex, closed and bounded.

The proof follows the same lines as in Pazman (1986). The logic of inference under embedding
is the following.

1. Observe that
min
u∈U

Det
[
M−1
T (u)

]
≥ min

w∈W
Det

[
M−1
ext(w)

]
(11)

2. Solve the problem:
w∗ = arg min

w∈W
Det

[
M−1
ext(w)

]
(12)

3. If one can find u∗ ∈ U such that w∗(τ, ν) = u∗(τ)u∗(ν), then, by (11), u∗ solves our
problem.

Optimality conditions. For w∗ that solves (12) define a kernel:

ker∗(τ, ν) = trace
[
M−1
ext(w

∗)H(τ, ν)
]
, (13)

which is symmetric and nonnegative definite, i.e.,

∀ f ∈ L2(0, T )

∫ T

0

∫ T

0
ker∗(τ, ν)f(τ) f(ν) ≥ 0.

As it is known (see, e.g., Yosida (1981)), there exists a sequence of orthonormal eigenfunctions
φ∗k(τ) and nonnegative eigenvalues µ∗k, k = 1, 2, . . . of the integral operator:

µφ(τ) =

∫ T

0
ker∗(τ, ν)φ(ν) dν. (14)

One can express the optimality conditions in terms of eigenvalues of (14).

Theorem 1 (The equivalence theorem)
1) w∗ = arg minw∈W Det

[
M−1
ext(w)

]
if and only if the following cndition holds:

sup
k=1,2...

µ∗k = r + 1 = dim(ā). (15)

2) For w∗ as in 1) there exists ŵ(τ, ν) = φ∗(τ)φ∗(ν), which is also D-optimal and

Mext(w
∗) = Mext(ŵ) = MT (φ∗),

where φ∗ is the eigenfunction, corresponding to the largest eigenvalue in (15).
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The scheme of the proof follows the steps of the Kiefer-Wolfowitz equivalence theorem. The main
ingredients are the following:
1) ∀w ∈ W with Mext(w) nonsingular we have (due to (10)):

(r + 1) = trace[M−1
ext(w)Mext(w)] ==

∫ ∫
kerw(τ, ν)w(τ, ν) ≤ µmax(w)

where µmax(w) is the largest eigenvalue of the integral operator with the kernel:

kerw(τ, ν) = trace[M−1
ext(w)H(τ, ν; ā)]

2) Assume that w∗ ∈ W is D-optimal and consider: wα(τ, ν) = (1− α)w∗(τ, ν) + αφ∗(τ)φ∗(ν).
Then, calculate: d log(Det[Mext(wα)

dα |α=0+.

• Condition (15) allows to check the optimality of a given w rather than to infer how it looks
like. It is a powerful tool for constructing algorithms for searching u∗ in the spirit of the
Wynn-Fedorov method.

• When one parameter is estimated, we are frequently able to derive the optimal input signal
explicitly.

• The above derivations conveys to L-optimality criterions.

• ker∗(τ, ν) can be interpreted as an approximation to the variance of prediction, but we
skip the discussion on the relationships to G-optimality.

The curse of a priori knowledge. As in optimum experiment design for nonlinear (in pa-
rameters) regression estimation, also here the optimal u∗ depends on unknown ā. There are well
known ways of circumventing this difficulty:

1. use "the nominal" parameter values for ā,

2. the "worst case" analysis,

3. the Bayesian approach: use prior distribution imposed on ā,

4. apply "the adaptive" approach of subsequent estimation and planning stages.

Later we use the "nominal" parameter values ā, but the results are relevant also to other ap-
proaches.

Example 1 (1-st order system) Consider the system: ẏ(t) + a y(t) = u(t), where a > 0 is
unknown. Then, for t > 0 g(t; a) = exp(−a t) and zero otherwise. Its sensitivity to a is given by
∇a g(t; a) = −t exp(−a t), t > 0. Thus,

H(τ, ν; a) = (4a3)−1 ea(ν−2T+τ)C(τ, ν, T )

where C(τ, ν, T ) is a function, which is too complicated to be worth displaying. H(τ, ν; a) is
intractable, but – using the first order Taylor’s expansion – for small T we obtain:

H(τ, ν; a) ≈ T [ν exp(aν)] [τ exp(a τ)] , (16)

Hence, ker∗(τ, ν) = 1
Mext(w∗) H(τ, ν; a) ≈ T [ν exp(aν)] [τ exp(a τ)] /Mext(w

∗) is a degenerated

kernel and it is clear that φ∗(τ) = τ exp(a τ). Thus, u∗(t) = s−1 t exp(a t), t > 0, where s def
=

1
2

(
e2T (2(T − 1)T + 1)− 1

) 1
2 is the normalization constant. Note that u∗(t) is a very aggressive

input signal. Hence, it is reasonable to apply it on a short interval (0, T ) only, not only for the
mathematical convenience, but also for practical reasons. Furthermore, for larger a ⇒ the growth
of u∗(t) is faster.
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Figure 1: Optimal input and output signal in Example 2.

Example 2 (2-nd order system) Consider 2-nd order ODE with known resonance frequency
ω0 and unknown damping parameter ξ (to be estimated).

ÿ(t) + 2 ξ ẏ(t) + ω2
0 y(t) = ω0 u(t), (17)

ẏ(0) = 0, y(0) = 0. Its sensitivity has the form: k(t; ξ) = ∇ξ g(t; ξ) = −t exp(−ξ t) sin(ω0 t).
Integrated sensitivity is so complicated that we approximate it (for small T ) as follows:

H(τ, ν; ξ) ≈ T k(T − τ ; ξ) k(T − ν; ξ) = T µ τ exp(ξ µ+ ξ τ) sin(ω0 µ) sin(ω0 τ)

Again, we have the degenerate kernel and it is easy to guess D-optimal input signal:

u∗(t) = b−1 t exp(ξ t) sin(ω0 t), (18)

where b is the normalizing constant. This signal and the system response to it are shown in Fig. 1.
As in the previous example, larger ξ (more dumping in a system) leads to the compensation of
the sensitivity by the rapidly growing amplitude t exp(ξ t).

We shall use the above examples as building blocks for D-opt. signals for estimating parameters
in PDE’s. We underline, that Thm. 1 is valid for arbitrary T > 0. We have used approximations
for "small" T in our examples only.

3 Sensors for PDE parameter estimation

Our aim in this section is to discuss briefly availability of observations that are made at each
point of a spatial domain. Firstly, we mention new devices that emerged in recent twenty years.
Then, we discuss the way of generating sensors’ positions, which are so well-distributed in space
that we can regard observations from them as made continuously in space.

3.1 An impact of new devices

Old paradigms (from 60’ of XX-th century) concerning identification of systems with spatio-
temporal dynamics assumed that observations of a system state and actuators that influence our
system can act at a finite number of spatial points only.
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New techniques and devices – developed in last 50 years – such as industrial cameras and
thermovision provide information, which can be considered as observations that are continuous in
space. Also micro-mechanical and electrical measurement systems (MEMS), e.g., accelerometers,
provide information, which can be treated as coming from each point in space (see below).

On the other hand, high energy lasers, acting as moving sources, microwave heating and
shape changing materials (e.g., piezo- electric bonds) can be considered as acting as spatially
distributed sources. Summarizing, in addition to point-wise and moving sensors and actuators, it
is reasonable and useful to consider spatially distributed observations and actuators for estimating
parameters of PDE’s and to develop a theory for them.

3.2 Well-distributed sequences generated by SFC’s as sensors’ positions

Our aim is to sketch briefly the construction of well-distributed (WD) points. In this paper
they serve for approximating observations as if they were made continuously in space, but they
can be also useful as experiment designs for nonparametric estimation of a regression function,
extending the results of Rafajłowicz and Schwabe (2006) and Rafajłowicz and Schwabe (2003).

Definition 1 (Equi-distributed sequences) A deterministic sequence (xi)
n
i=1 of points from

the unit cube Id ⊂ Rd is called equi-distributed (EQD) sequence in Id if limn→∞ n−1
∑n

i=1 g(xi) =∫
Id
g(x) dx holds for every g continuous on Id.

Formally, EQD’s behave as uniformly distributed random sequences. They are also called uni-
formly distributed, quasi-random or quasi Monte-Carlo sequences, see, e.g., Kuipers and Nieder-
reiter (1974), where also the following one-dimensional example of EQD sequence is discussed:

xi = fractional part(i θ), i = 1, 2, . . . , (19)

where θ is an irrational number.

Definition 2 (Well-distributed sequences) Sequence (xi)
n
i=1 is called well distributed (WD)

in Id if limn→∞ n−1
∑k+n

i=k g(xi) =
∫
Id
g(x) dx holds uniformly in k, for every g ∈ C(Id)

It is known that (19) is WD. As far as we know, multidimensional, extendable WD sequences
are not known, where by extendability of WD sequence we mean that one add a new point to
the sequence without the necessity of recalculating and changing positions of the previous points
Niederreiter and Pillichshammer (2009).

The sequence that is proposed below is WD and extendable. Its construction is based on
space-filling curves (SFC).

Definition 3 (Space-filling curve) A space-filling curve is a mapping: Φ : I1
onto→ Id, which

is a continuous function on I1 = [0, 1] and maps I1 onto Id.

The Hilbert, Peano and Sierpinski are well known examples of SFCs. They can be approximated
in O

(
d
ε

)
arithmetic operations (ε > 0 is a desired accuracy), as it was proved by Butz (1971)

and Skubalska-Rafajłowicz (2001) and Skubalska-Rafajłowicz (2003).
Our method for WD sequences runs as follows:

Step 1) Generate WD one-dimensional sequence in [0, 1]: ti = frac(i θ), i = 1, 2, . . . ,
Step 2) Select SFC Φ and generate xi’s as xi = Φ(ti), i = 1, 2, . . . .

Theorem 2 If θ is irrational and SFC has the property: for all functions g : Id → R
∫

Id

g(x) dx =

∫ 1

0
g(Φ(t)) dt, (20)

then our sequence xi is not only EQD, but also well distributed.
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We omit the technical proof of this result. Note that property (20) is shared by the Sierpinski,
the Peano and the Hilbert SFC’s. From the well known Koksma-Hlavka inequality (see, e.g.,
Kuipers and Niederreiter (1974)) it follows that having a WD sequence one can approximate∫
g(x) very accurately by n−1

∑n
i=1 g(xi). As we shall see in the next section, in our derivations

spatial sensors’ positions appear under integrals only. Thus, we can consider observations as
continuous in space, when sensors’ are placed at WD points,

4 Input signals for estimating parameters in PDE’s

Consider a spatio-temporal systems described by:

• q(x, t) – the system state at spatial point x ∈ Rd and time t, we shall also write q(x, t; ā)
to indicate its dependence on unknown parameters,

• U(χ, t) – an input signal at spatial point χ ∈ Ω ⊆ Rd and time t, where Ω is a bounded
and open domain.

System description. Consider the following class of PDE:

{q̈(x, t)}+ µ q̇(x, t) = Ax(ā) q(x, t) + U(x, t), (21)

x ∈ Ω, where q̇(x, t) = ∂q(x,t)
∂t , Ax(ā) – an operator of the elliptic type. When the term q̈(x, t)

is present, we have PDE of the hyperbolic type, if not, the our PDE is classified as that of the
parabolic type. (e.g., heat conduction or diffusion). Note: that we treat µ as known parameter
for brevity, but it can be included also as unknown parameter. Interpretable examples of Ax(ā)
include:

Ax(ā) q(x, t) = a1
∂2q(x, t)

∂x2
1

+ a2
∂2q(x, t)

∂x2
2

+ a3 q(x, t),

Ax(ā) q(x, t) = a1
∂4q(x, t)

∂x4
1

+ a2
∂4q(x, t)

∂x4
2

, (22)

which should be accompanied by boundary conditions that are included into the description of
the domain of Ax(ā), denoted as D(Ax) ⊂ L2(Ω), where L2(Ω) – the class of squared integrable
functions with the inner product < f, g >=

∫
Ω f(x) g(x) dx.

More generally, we admit operators Ax of the form:

Ax(ā) q(x, t) =

r∑

i=1

ai P
(i)
x q(x, t), (23)

where P (i)
x , i = 1, . . . , r are differential operators w.r.t. spatial variables and such that:

• Ax is symmetric, i.e., ∀f, g ∈ L2(Ω): < Ax(ā) f, g > = < f, Ax(ā) g > .

• Ax is positive definite, i.e., ∀f,∈ L2(Ω) f 6= 0 ⇒ < f, Ax(ā)f > ∈ R+

• Eigenfunctions v1(x), v2(x), . . . of Ax(ā) do not depend on ā (it suffices that vk’s are eigen-
functions of P (i)

x ).

• This implies that the eigenvalues λk(ā) of Ax(ā) are linear functions of ā, i.e., λk(ā) = b̄trk ā,
Ax(ā) vk = −λk(ā) vk for certain (known) vectors b̄k, k = 1, 2, . . .

• We assume that vk, k = 1, 2, . . . form complete and orthonormal basis of L2(Ω).
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Here and later we assume that initial conditions are zero. Under these assumptions the solution
of (21) is of the form:

q(x, t; ā) =

∞∑

k=1

vk(x) yk(t; ā), (24)

where yk(t)’s are the solutions of

{ÿk(t; ā)}+ µ ẏk(t; ā) = −λk(ā) yk(t; ā) + uk(t), (25)

uk(t)
def
=
∫

Ω U(x, t) vk(x) dx, ẏk(0) = yk(0) = 0.
Observations of system (21) for estimating ā have the form:

Y (x, t) = q(x, t; ā) + ε(x, t), x ∈ Ω, (26)

where ε(x, t) is zero mean, uncorrelated in space and time, covariance stationary, Gaussian
process (σ2 = 1). t ∈ (0, T ).

The Fisher information matrix is given by

MT (U) =

∫

Ω

∫ T

0
∇aq(x, t; ā)∇tra q(x, t; ā) dt dx. (∗∗) (27)

Problem statement: find D-optimal spatio-temporal input signal U∗ such that Det
[
M−1
T (U)

]

is minimized over all U ∈ L2(Ω× (0, T )) with the constrained energy, i.e.,
∫

Ω

∫ T

0
U2(x, t) dt dx ≤ 1. (28)

Embedding again. The completeness and orthogonality of eigenfunctions vk of Ax allows us to
reformulate our problem. To this end, define uk(t) =< U(., t), vk >, then constraint (28) reads
as ∞∑

k=1

∫ T

0
u2
k(t) dt ≤ 1 (29)

while FIM can be expressed as follows:

MT (U) =
∞∑

k=1

∫ T

0
∇ayk(t; ā)∇tra yk(t; ā) dt. (30)

Denoting by Ik(t; ā) the impulse response of (25), we obtain

∇ayk(t; ā) =

∫ T

0
∇aIk(t− τ ; ā)uk(τ) dτ. (31)

Thus, FIM can be expressed as

MT (U) =

∞∑

k=1

∫ T

0

∫ T

0
Hk(τ, ν; ā) uk(τ)uk(ν)︸ ︷︷ ︸ dτ dν,

where ︸︷︷︸ indicates the same source of non-convexity as in 1-D case, while

Hk(τ, ν; ā)
def
=

∫ T

0
∇aIk(t− τ ; ā)∇tra Ik(t− ν; ā) dt
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We can not select one mode and optimize its input signal, because, Hk(τ, ν; ā) = b̄k b̄
tr
k ck(τ, ν; ā)

is rank one matrix, where ck(τ, ν; ā)
def
=
∫ T

0 ρk(t− τ ; ā) ρk(t− ν; ā) dt. while

ρ̈k(t; ā) + µ ρ̇k(t; ā) = −λk(ā) ρk(t; ā)− Ik(t), (32)

Ïk(t; ā) + µ İk(t; ā) = −λk(ā) Ik(t; ā) + δ(t). (33)

Note also that ∇aIk(t; ā) = b̄k ρk(t; ā). We are at the position to apply the embedding trick
again, but this time it is more complicated. As the optimization variables we consider sequences
of the form:

W = [α1w1(τ, ν), α2w2(τ, ν), . . .], (34)

wk ∈ W, αk ≥ 0,

∞∑

k=1

αk ≤ 1, (35)

where W is the same as defined by (9). Let us denote by Wseq the set of all such sequences,
which is clearly the convex set. For W ∈ Wseq define Mext(W ) as follows:

Mext(W ) =
∞∑

k=1

αk

∫ T

0

∫ T

0
Hk(τ, ν; ā)wk(τ, ν) dτ dν.

Then, log {Det [Mext(W )]} is a concave functional on Wseq.

5 Spatio-temporal structure of the solution

Theorem 3 D-optimal input signal for parameter estimation in (21) can be expressed as follows:

U∗(x, t) =

L∑

k=1

√
α∗k vk(x)φ∗k(t). (36)

This signal is D-optimal if and only if the weights α∗k ≥ 0,
∑L

k=1 α
∗
k = 1 and φ∗k(t),

∫ T
0 (φ∗k(t))

2 dt =
1 are selected so as

sup
k=1,2,...

µ(k)
max(U∗) = dim(ā), (37)

where µ(k)
max(U∗) is the largest eigenvalue of the integral operator with the kernel ker∗k(τ, ν) =

trace[M−1
T (U∗)Hk(τ, ν; ā)]. The number of terms L in (36) can be selected L ≤ R (R + 1)/2,

R
def
= dim(ā).

Theorem 4 Under the assumptions made in the previous section, Hk(τ, ν; ā) = b̄k b̄
tr
k ck(τ, ν; ā)

and then one can select φ∗k(t) as the eigenfunction, corresponding to the largest eigenvalue of the
operator with kernel ck(τ, ν; ā). In this case, α∗k’s solve the standard D-optimal problem:

max
α1,α2,...

Det

[
L∑

k=1

αkMk

]
, (38)

over all αk ≥ 0’s,
∑L

k=1 αk = 1, where Mk
def
= γ

(k)
max b̄k b̄

tr
k , while γ

(k)
max is the largest eigenvalue of

the operator with kernel ck(τ, ν; ā).

Several remarks are in order concerning the above results.
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• Thm. 3 reveals the structure of D-optimal signal – each spatial mode is excited by its own
time domain signal. It allows to check D-optimality of a signal that was "guessed" (as the
Kiefer-Wolfowitz thm.).

• Thm. 4 goes further: excitations of spatial modes are eigenfunctions of the operators with
kernels ck(τ, ν; ā) that can – in principle – be calculated (they depend only on our system).
Furthermore, α∗k’s can be calculated by solving the standard D-optimal problem (e.g., by
the Wynn-Fedorov algorithm).

• These theorems are valid for arbitrary T .

If we allow T to be "small", then we can formulate a simple algorithm for approximating U∗(x, t).
By "small" T we mean that the following approximation is sufficiently accurate:

ck(τ, ν; ā) =

∫ T

0
ρk(t− τ ; ā) ρk(t− ν; ā) dt ≈ T ρk(T − τ ; ā) ρk(T − ν; ā).

Approximating optimal solution for "small" T .

Step 1 Set φ∗k(t) = n−1
k |ρk(T − t; ā)|, where nk

def
=
[∫ T

0 ρ2
k(T − t; ā) dt

] 1
2

Step 2 Solve the standard D-optimal design problem: maxα1,α2,... Det
[∑L

k=1 αk nk b̄k b̄
tr
k

]
.

Step 3 Form the approximation Ũ(x, t) of U∗(x, t) as follows:

Ũ(x, t) =

L∑

k=1

√
α∗k vk(x) ρk(T − t; ā)/nk.

1. Excitations of each spatial mode is based on its sensitivity function, but running backward
in time. For stable systems the sensitivity functions ρk(t; ā) are decreasing in time. Thus,
D-opt. excitations are rapidly growing in time.

2. Hence, allowing for "small" T is not only for mathematical convenience, but also to prevent
a system from destruction.

3. ρk(t; ā) rapidly decrease with k – only several first of them is informative at all.

Example 3 (hyperbolic case) Consider a damped spatio-temporal vibrations described by:

∂2 q(x, t)

∂ t2
+ 2 ξ

∂ q(x, t)

∂ t
+ a

∂2 q(x, t)

∂ x2
= U(x, t),

x ∈ (0, 1), q(0, t) = q(1, t) = 0, where a is unknown parameter. In this case it suffices to
excite the first mode of the system v1(x) = 1√

π
sin(π x) by the signal, which is proportional to

t exp(ξ t) sin(
√
a t). Its not normalized structure is shown in Fig. 2.

Example 4 (parabolic case) Consider the heat transfer equation with two unknown parame-
ters a1, a2:

∂ q(x, t)

∂ t
+ a1

∂2 q(x, t)

∂ x2
+ a2 q(x, t) = U(x, t),

x ∈ (0, 1), q(0, t) = q(1, t) = 0. The space-time structure of the optimal input signal consists of
two two modes, v1(x) = 1√

π
sin(π x) and v2(x) = 1√

π
sin(2π x), each excited by the exponentially

growing function of time as it is show in Fig. 3, but the influence of the 2-nd one almost invisible.
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Figure 2: The space-time structure of the optimal input signal in Example 3.

Figure 3: Optimal input signal in Example 4.

What if U∗(x, t) too aggressive ?

• Use very short T . and/or add constraints on the energy of the system state.

• Change setting to the following one:

lim
T→∞

T−1

∫

Ω

∫ T

−T
u2(x, t) dx dt ≤ E, (39)

where E > 0 is admissible input power. Applying (39) requires quite different tools to
derive optimality conditions.

Conclusions

1. Under several simplifying assumptions we were able to establish pleasing results that opti-
mal input signals are sums of excitations, which are products of natural modes in space and
exponentials or exponentially growing sinusoids with natural system frequencies in time.

2. Should we apply these results in practice ? Only when we are conducting experiments
in labs, with perfectly controlled conditions. Otherwise, they provide a lower bound on
achievable accuracy. Add constraints to prevent your system from being destroyed.

Optimal Design of Experiments – Theory and Application, Vienna 2011

140



References

Atkinson, A.C., Donev, A.N. (1992). Optimum Experimental Designs. Clarendon Press, Oxford.

Amouroux, M. and Babary, J. P. (1988). Sensor and control location problems, in M. G. Singh
(Ed.), Systems and Control Encyclopedia. Theory, Technology, Applications, 6, Pergamon
Press, Oxford, 4238–4245.

Banks, H. T., Kunisch, K. (1989). Estimation Techniques for Distributed Parameter Systems.
Birkhauser, Boston.

Banks, H. T., Kojima, F. (1988). Boundary Identifcation for 2D Parabolic Problems Arising in
Thermal Testing of Materials., Proc. 27th Confernece on Decision and Control, Austin, Texas,
December 1988.

Butz, A. (1971). Alternative Algorithm for Hilbert‘s Space-filling Curve, IEEE Trans. on Com-
puting, C-20, 424–426.

Chavent, G., Kunisch, K. (2002). The output least squares identifiability of the diffusion coeffi-
cient from an H1 - observation in a 2-D elliptic equation, ESAIM, Control, Optimization and
Calculus of Variations, 8, 423–440.

Fleming A. J., Moheimani S. O. R. (2003). Spatial System Identification of a Simply Supported
Beam and a Trapezoidal Cantilever Plate., IEEE Trans. Control Systems Technology, 11(5),
726–736.

Ito, K., Kunisch, K. (1997). Estimation of the Convection Coefficient in Elliptic Equations,
Inverse Problems, 13, 995 – 1013.

Kuipers, L., Niederreiter, H. (1974). Uniform Distribution of Sequences. Wiley, New York (1974);
Reprint, Dover, Mineola (2006)

Kunisch, K., Nakagiri, S. (1995). Identifiability of Spatially-Varying Parameters in Distributed
Systems of Parabolic Type by Continuous Interior Observations, Control Theory and Advanced
Technology, 10(4), 2065–2082.

Kunisch K. (1988). A Survey of Recent Results on the Output Least Squares Formulation of
Parameter Estimation Problems, Automatica, 24, 531–593.

Laskar J. M. et-al. (2008). Measurement of thermal diffusivity of solids using infrared thermog-
raphy, Mater. Lett. .

Mehra, R.K. (1974). Optimal input signals for parameter estimation in dynamic systems - survey
and new results. IEEE Trans. Auto. Contr., 19, 753–768.

Milne S. C. (1980). Peano curves and smoothness of functions. Advances in Mathematics, 35,
129–157.

Moore E.H. (1900). On certain crinkly curves, Trans. Amer. Math. Soc. 1, 72–90.

Niederreiter, H., Pillichshammer F. (2009). Construction Algorithms for Good Extensible Lattice
Rules, Constr Approx 30, 361 – 393.

Nelles O. (2000). Nonlinear System Identification: From Classical Approaches to Neural Networks
and Fuzzy Models, Springer.

Optimal Design of Experiments – Theory and Application, Vienna 2011

141



Pazman, A. (1986). Foundations of Optimum experimental design. D. Reidel, Dordrecht.

Pierce, A. (1979). Unique identification of eigenvalues and coefficients in parabolic problem.
SIAM J. Contr. Opt.,Vol. 17, pp 494-499,

Rafajłowicz, E., (1984). Nonparametric algorithm for identification of weakly nonlinear static
distributed parameter systems. Systems and Control Letters, 4, 91–96.

Rafajłowicz, E. (1978) Design of experiments for eigenvalue identification in the static distributed
systems. Systems Science, 4(4), 349–361.

Rafajłowicz, E. (2000). Repeated least squares with inversion and its application in identifying
linear distributed-parameter systems. Int. J. Syst. Sci., 31, 1003–1010.

Rafajłowicz, E., Wnuk, M. and Rafajłowicz, W. (2008). Local detection of defects from image
sequences. International Journal of Applied Mathematics and Computer Science. 18(4), 581–
592.

Rafajłowicz, E. and Rafajłowicz, W. (2010). Testing (non-)linearity of distributed-parameter
systems from a video sequence, Asian Journal of Control 12(2) , "paper in press" DOI:
10.1002/asjc.172

Rafajłowicz, E. (1987). Information equivalence of sensors-controllers configurations in identifi-
cation of homogeneous static distributed systems. In Modelling and Simulation of Distributed
Parameter Systems. Proceedings of the IMACS/IFAC International Symposium, 553–557. Hi-
roshima Inst. Technol., Japan, October 6th–9th, 1987.

Rafajłowicz, E. (2008). Testing homogeneity of coefficients in distributed systems with applica-
tion to quality monitoring. IEEE Transactions on Control Systems Technology, 16(2), 314–321.

Rafajłowicz, E. (1989). Time-domain optimization of input signals for distributed- parameter
systems identification. Journal of Optimization Theory and Applications, 60(1), 67–79,

Rafajłowicz, E. (1990). Optimum input signals for parameter estimation in systems described by
linear integral equations. Computational Statistics & Data Analysis. 9, 11–19,

Rafajłowicz E. (1989). Reduction of distributed systems identification complexity using intelli-
gent sensors. International Journal of Control. 50(5), 1571–1576,

Rafajłowicz, E. (1985). Spectral synthesis of optimal input signals for linear distributed - param-
eter systems identification. International Journal of Systems Science, 16(6), 667–675,

Rafajłowicz, E. (1984). Unbounded power input signals in optimum experiment design for pa-
rameter estimation in linear systems. International Journal of Control, 40(2), 383–391,

Rafajłowicz, E. (1983). Optimal experiment design for identification of linear distributed-
parameter systems /frequency domain approach/. IEEE Transactions on Automatic Control,
AC-28(7), 806–808.

Rafajłowicz, E. (1981). Design of experiments for eigenvalue identification in distributed-para-
meter systems. Int. J. Control, 34, 1079 — 1094.

Rafajłowicz, E. (1986). Sequential identification algorithm and controller choice for a certain
class of distributed systems. Kybernetika, 22, 471–486.

Optimal Design of Experiments – Theory and Application, Vienna 2011

142



Rafajlowicz, E. and Schwabe, R. (2006). Halton and Hammersley sequences in multivariate
nonparametric regression. Statistics and Probability Letters, 76(8), 803–812

Rafajowicz, E. and Schwabe, R. (2003). Equidistributed designes in nonparametric regression.
Statistica Sinica. 13(1), 129-142.

Russ J. C. (2007). The Image Processing Handbook. CRC Taylor & Francis.

Sagan, H. (1994). Space-filling Curves, Springer-Verlag, Berlin, Heidelberg.

Sierpiński, W. (1912). Sur une nouvelle courbe continue qui remplit toute une aire plane. Bull.
de l‘Acad. des Sci. de Cracovie A., 463–478.

Skubalska-Rafajłowicz, E. (2001). Pattern recognition algorithms based on space-filling curves
and orthogonal expansions. IEEE Trans. Information Th., 47, 1915–1927.

Skubalska-Rafajłowicz, E. (2004). Recurrent network structure for computing quasi-inverses of
the Sierpiński space-filling curves. Lect. Notes in Comp. Sci., Springer-Verlag 3070, 272–277.

Skubalska-Rafajłowicz, E. (2001). Data compression for pattern recognition based on space-filling
curve pseudo-inverse mapping. Nonlinear Analysis. 47, 315–326.

Skubalska-Rafajłowicz, E. (2003) Neural networks with orthogonal activation function approxi-
mating space-filling curves. Proc. 9th IEEE Int. Conf. Methods and Models in Automation and
Robotics. Miedzyzdroje, 2, 927–934.

Tychonov, N. and Samarski, A. A. (1967). Partial Differential Equations of Mathematical
Physics. Holden-Day Inc., San Francisco.

Uci nski, D. (2000). Optimal sensor location for parameter estimation of distributed processes,
International Journal of Control, vol 73(13), pp 1235–1248.

Uciński D. (2005) Optimal Measurement Methods for Distributed Parameter System Identifica-
tion. CRC Press, London, New York.

Yosida, K. (1981). Functional Analysis. Springer-Verlag.

Zarrop M.B. (1979). Optimal experimental design for dynamic system identification, Lecture
Notes in Control and Information Science 21. Springer-Verlag, Berlin, Heildelberg, New York.

Optimal Design of Experiments – Theory and Application, Vienna 2011

143



Determining the Size of Experiments for ANOVA Models 
 

Dieter Rasch* 
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University of Natural Resources and Life Sciences, Vienna 

 
Abstract: In this paper the theoretical background for determining the minimal 
size of an experiment that should be analyzed by analysis of variance with at least 
one fixed factor about which a null hypothesis has to be tested is given. Described 
are fixed and mixed models in cross, nested and mixed classifications. 
Corresponding R-programs are demonstrated by examples. 
 
Keywords: Analysis of variance, sample size, non-centrality parameter 

 

1 Introduction 
 
The process of gaining knowledge in the empirical sciences can be considered as follows: 
 (i) Formulation of the problem, 
(ii) Fixing the precision requirements, 
(iii) Selecting the statistical model for planning and analysis, 
(iv) Determining the (optimal) design of the experiment or survey, 
(v) Performing the experiment or the survey, 
(vi) Statistical analysis of the observed results, 
(vii) Interpretation of the results. 
The first four steps belong to the pre-experimental statistics whereas the two last belong to the post-
experimental statistics. 
The statistical planning of an experiment includes the construction of an optimum statistical experimental 
design and the determination of the minimum sample size, which is necessary to achieve, predetermined 
precision requirements in the context of a chosen statistical model for the analysis of the results. 
In this paper we consider only the problem of the determination of the minimum sample size of an 
experiment for the best estimators, the in expectation shortest confidence intervals and the uniformly best 
unbiased tests which in linear models is sometimes different from determining the sample size. 
Point Estimation: 
Choose the size of the experiment (random sample) so that the variance of the best estimator is below 
a given bound B. As an example we consider the estimation of the expectation. At first we have to 

choose the best unbiased estimator, which is the mean of the sample. Its variance is 
n

2σ
 and from 

B
n

≤
2σ

 it follows 
B

n
2σ≥  or the integer solution 








=

B
n

2σ
, where  x  is the smallest integer 

x≥ . 
Interval Estimation: 
If the precision requirement states that the expected half-width of a confidence interval must be less than 
or equal to δ, then, for a given α , n has to be determined so that with the upper bound u and the lower 
bound l of the (1 – α ) - confidence interval 

( ) ( )[ ] δαα ≤− luE
2

1
 

Of course at first we have to find the (1-α ) – confidence interval with the smallest expected length 
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As an example we consider the confidence estimation of the expectation of a normal distribution (variance 
unknown). The shortest (in expectation) two-sided (1-α )- confidence interval is given by 

[ ;  ]y
s

y
s− − − + − −t n

n
t n

n
( ; ) ( ; )1 1

2
1 1

2

α α
, its half expected length is 

( ) ( ) σ

α
α

1
2

1

2
2

)
2

1;1(
)

2
1;1(

−






 −Γ

⋅






Γ−−
=−−=

n
n

n

n

nt

n

E
ntE

s
H . 

( ) δ≤HE leads to the equation for n: 

( ) 

















−






 −Γ

⋅



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
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2

2
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δ
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Hypothesis Testing: 
The problem of determining the size of an experiment we explain for the one-sample problem for 
testing an expectation, and then the size of the experiment is again the sample size.  
A random sample y1, y2, ..., yn 

1 of size n will be drawn from a normally distributed population with mean 

µ  and variance 2σ , with the purpose of testing the null hypothesis: 
     H0 : µ  = µ 0     (µ 0 is a given constant) 
against the alternative hypothesis: 
 HA : µ  ≠  µ 0 (two-sided alternative). 
The test statistic of a uniformly most powerful unbiased test is 
 

 t
y

s
 =  

  − 0µ
n   

which is non-central t-distributed with n –1 d.f. and non-centrality parameter 

n
σ

µµ
λ 0  

 =
−

. 

Under the null hypothesis, the distribution is central t. 
If the Type I error probability is α , H0 will be rejected if: 
|t|> t(n-1;1-α/2). 
Our precision requirement is given by α  and the risk of the second kind β� if µ-µ0= δ. 
From this we have the requirement 
 t(n-1;1-α/2) = t(n-1;λ;β)      (1) 
where t(n-1;λ;β)  is the β--quantile of the non-central t- distribution with n – 1 d.f. and non-centrality 
parameter λ.  
Using the approximation t(n-1;λ;β) = t(n-1,β) + λ leads to the approximate formula 

( )




























 −−+







 −−≈
2

1;1
2

1;1 
δ
σβα

ntntn . 

Equation (1) is crucial for determining minimal sizes when testing location parameters, a 
generalization will be considered in the main part of the paper. 

Optimal Design of Experiments – Theory and Application, Vienna 2011

145



2 Tests in the Analysis of Variance about the effects of a fixed factor 
 
For all models in the analysis of variance (ANOVA), the linear model equation has the form 
 
 y = E(y) + e 
 
In this equation the random variable y models the observed character. The observation y is the sum of the 
expectation (mean) E(y) of y and an error term e, containing observational errors with E(e) = 0, var(e) = 
σ2. The variability in E(y) between experimental units depends linearly on model parameters. The models 
for the analysis of variance differ in the number and the nature of these parameters. 
The observations in an analysis of variance are allocated to at least two classes, which are determined by 
the levels of the factors. 
Each of the models of the analysis of variance contains the general mean µ , i.e. we write E(y) in the 
form: 
 
 E(y) = µ  + EC(y) 
 
where EC(y) is the mean deviation from µ  within the corresponding class. In the case of p factors the 
analysis of variance is called p-way. 
It follows that the total set of the y does not constitute a random sample because not all the y have the 
same expectation. Furthermore in models with random factors the y within the same class are not 
independent. 

For all the models we assume that the variance 2σ  of the error terms in the equations is the same in all 
subclasses and that all the random variables in the right hand side (r.h.s.) of the model equations are 
mutually independent and have expectation zero. 
We assume that y has a normal distribution and that we have equal subclass numbers n. We then can test 
the following null hypothesis in all models with a fixed factor A having effects  ai , (i = 1, …, a). 
H0: "The factor A has no effect on the dependent variable y". In other words: "All the ai are equal". If 

it is assumed that the sum of the ai is zero, this is the same as "All the ai are equal to zero”.  
The alternative hypothesis is: 
HA: "At least two of the ai are different". 
The test statistic for this test is a variate F that (if the null hypothesis is true) follows a (central) F-
distribution with f1 and f2 degrees of freedom. The (1-α )-quantile of the distribution of F(f1; f2) is denoted 
by F(f1; f2; 1-α ). 
This test statistic is generally calculated by following the next 8 steps - here "generally" means that these 
steps should be used for all situations and models in this paper but also for any other ANOVA situation. 
 
1. Define the null hypothesis. 
2. Choose the appropriate model (I, II, or mixed). 
3. Find the E(MS) column in the ANOVA table (if there are several such columns, find the one that 

corresponds to your model).   
4. In the same table find the row for the factor that appears in your null hypothesis. 
5. Change the E(MS) in this row to what it would be if the null hypothesis were true. 
6.  Search in the same table (in the same column) for the row, which now has the same E(MS) as you 

found in the 5th step. 
7.  The F-value is now the value of the MS of the row you found in the fourth step divided by the 

value of the MS of the row you found in the 6-th step. 
   8. Note: in ANOVA with higher classifications, the 6-th step may not be successful, in which case 

one can use the so-called Satterthwaite approximation. 
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The minimum size of the experiment should be determined so that the precision requirements are 
fulfilled. The size of the experiment depends on the degrees of freedom (d.f.) of the nominator f1 and 
the denominator f2 of the F-statistic. f2 depends not always on the sub-class number n. If we sample 
factor levels of random factors, the size of those samples also determines the size of the experiment. 
The minimal size is determined in dependence on a lower bound δ of the difference between the 
maximum and the minimum of the effects to be tested for equality by an F-test, further on the risks α 
and β of the test and on a presumable value of the common residual variance. 
The problem of the determination of the size of an experiment for the analysis of variance has been 
investigated by, among others, Tang, P. C. (1938), Lehmer (1944), Fox (1956), Tiku (1967, 1972), 
Das Gupta, P. (1968), Bratcher et al. (1970), Kastenbaum et al. (1970a, b), Bowman (1972, 1975), 
Rasch et al. (1997), Herrendörfer et al. (1997) and Rasch (1998). 
The solution λ of the following equation plays a crucial role: 
 F(f1, f2,0,1-α ) = F(f1, f2, λ,β)    (2) 

where F(f1,,f2,0,1-α ) is the (1-α)-quantile of the (central) F-distribution with degrees of freedom  f1 

and f2 and non-centrality parameter 0 and where F(f1, f2, λ,β) is the β-quantile of the F-distribution with 

degrees of freedom f1 and f2 and non-centrality parameter λ.  

 
Figure 1: Demonstrating the relation of equation (2) 
 
Figure 1 shows the relation of Equation (2) it is a generalization of equation (1). 
But contrary to the t-test we have at least 3 expectations or effects in ANOVA models 
For the null hypothesis about a fixed factor A having effects  ai , (i = 1, …, a) the sample size depends not 
only on the difference between the extreme effects but also on the position of the other effects. 

Remark: The noncentrality parameter λ is proportional to ∑
=

a

i
ia

1

2  (when we assume that ∑ai = 0) and 

from Figure 1 we see that as larger λ as smaller the minimal size needed. 
 
The most favorable case leads to the maximum λ and the smallest minimum sample size ,...; minmin bn , 
the mini-min size and the least favorable case leads to the biggest minimum sample size, the maxi-min 
size ,...; maxmax bn .  
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Lemma 1: 
Without loss of generality (w.l.o.g.) we assume: 

2
and,

2
,,0 maxmin21

1

δδ =−=≤≤≤=∑
=

aaaaaa a

a

i
i L and further w.l.o.g. σδ = . We consider a Model 

I of ANOVA (all the factors are fixed) with a cross classification and equal sub-class numbers. 
a) Under the conditions above the minimin size minn  (the most favorable case) occurs if we split 

the ai  into two groups of size aI and aII  respectively with a = aI + aII and 1≤− III aa  and the aI 

elements of the first group equal δ
a

aII−  and the aII  remaining equal δ
a

aI . Thus there are two 

solutions for odd a and for even a half of the effects are equal to 
2
δ−  and half of them are equal 

to 
2
δ

. Then ( )III

a

i
i aa

a
a ⋅=∑

=

2

1

2 δ
 and is a maximum. 

b) Under the conditions above the maximin size maxn  (the least favorable case) occurs if 

2
and,

21

δδ =−= aaa  and all the other effects are zero. Then 
2

2

1

2 δ=∑
=

a

i
ia  and a minimum. 

c) In the singular case (two-sample problem) a = 2 both sizes are identical. 

Proof: It is easy to see that the condition a

a

i
i aaaa ≤≤≤=∑

=
L21

1

,0  is fulfilled as well in case a) as also 

in case b).  
a) For case a) and even a the statement is evident. In general we know that with a = aI + aII  the 

product aI aII is maximum if aI and aII  are as equal as possible. That makes 

22
2

2
2

2
2

2

2

1

2 δδδδ
a

aa
aa

a

a

a

a
a

a

a
aa III

III
I

II
II

I

a

i
i

⋅=⋅=⋅+⋅=∑
=

 a maximum if aI and aII differ at 

most by 1. In Table 1 some values of ∑
=

a

i
ia

1

2
2

1
δ

 in the most favorable case are given. 

 

Table 1 Values of ∑
=

a

i
ia

1

2
2

1
δ

 for the most favourable case in dependence on a. 

a 2 3 4 5 6 7 8 

∑
=

a

i
ia

1

2
2

1
δ

 
 
0.5 

 
0.667 

 
1 

 
1.2 

 
1.5 

 
1.714 

 
2 

 
b) For even a the result of case b) follows from the theory of D-optimal designs in regression. 
For odd a we obtain the result by equating the partial derivatives with respect to the effects 

and κ of zxw κ−=  to zero. Hereby is ( )2
1

2
1

2
1

1

2 ... aaaax a

a

i
i ++++== −

=
∑ δ  and 

( )111
1

... aaaaz a

a

i
i ++++== −

=
∑ δ ..This completes the proof because w is a convex 

function. 
We already called the mini-min size by minn and the maxi-min size by maxn . The experimenter now has to 

choose the number of observations n per factor level (class) between the lower bound nl and the upper 
bound nu: 
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 maxmin nnn ≤≤   

All that remains to be done is to calculate the bounds minn  and maxn  for different classifications and 

models. 
 

3 The one-way Analysis of variance 
 
The model equation of the one-way analysis of variance with a fixed factor A is written in the form: 
 
 y ij = E(y ij) + e ij = µ  + ai + e ij   (i = 1,...,a; j= 1,...,n ). 
The αi are the main effects of the factor levels Ai; they are real numbers, i.e. not random. The model is 
completed by the following constraints (sometimes called side conditions): the eij are mutually 

independent with E(eij) = 0 and var(e ij) = 2σ and that the sum of the ai is zero. The pair of hypotheses: 
H0: "All the ai are equal to zero”.  
HA: "At least two of the ai are different". 
is tested with help of the test statistics 

resMS
MS

F =  

with the mean squares from the corresponding ANOVA-Table with a-1 and a(n-1) degrees of 
freedom. 
F is with these d.f. F distributed with the non-centrality parameter  

∑
=−

=
a

i
ia

a

n

1

2

1
λ  

which in the most and least favorable case increases with n and decreases with a. This means that 
under otherwise equal conditions the necessary sample sizes and thus the size of the experiment 
increase with increasing number of factor levels. 
 
Examples and R-Programs 
To calculate the minimum sample sizes minn  and maxn  we use the R-package OPDOE. 

We plan to perform an experiment with four levels of a fixed factor A  and measure the yield of a crop in 
dt=100 kg per ha. The four levels are four varieties of a cereal crop. 
The number n of plots per variety has to be determined to satisfy the following conditions: Type I error 
probability α  = 0.05, and Type II error probability ≤β  0.1 if amax - amin σ2≥  . 
>size_n.one_way_ model_1(0.05,0.1,2,4,”maximin”) 
[1] 9 
>size_n.one_way_ model_1(0.05,0.1,2,4,”minimin”) 
[1] 5 
 
This means that minn  = 5 and maxn  = 9. 

 

4 The two-way Analysis of variance 
 
The model equation of the two-way analysis of variance with the factor A with a levels Ai and the factor B 
with the b levels Bj and equal number of observations in the subclasses is  
 
yijk = µ  + ai + bj + (ab)ij + eijk (i = 1, ..., a;  j = 1, ..., b;  k = 1, ..., n) 
 
if both factors are fixed (Model I) and  
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yijk = µ  + ai + bj + (ab)ij + eijk (i = 1, ..., a;  j = 1, ..., b;  k = 1, ..., n) 
 
if factor A is fixed and factor B is random (mixed model). 
In model I we assume in addition to the assumptions for the one-way ANOVA that the sums of the 
(ab)ij (separately over each index) all equal zero. 
 
As in the one-way classification we like to test the pair of hypotheses: 
H0: "All the ai are equal to zero”.  
HA: "At least two of the ai are different". 
The test statistics is for Model I 

FA = 
MS
MS

R

A  

which is F- distributed with a – 1 and a(n-1) d.f. and non-centrality parameter ∑
=−

=
a

i
ia

a

bn

1

2

1
λ . 

For the mixed model the test statistics is 

A
A

A B
 =  F

MS
MS ×

 

which is F- distributed with a – 1 and (a-1)(b-1) d.f. and non-centrality parameter ∑
=−

=
a

i
ia

a

bn

1

2

1
λ . 

This means that under otherwise equal conditions the necessary sample sizes and thus the size of the 
experiment increases with an increasing number of levels of the factor A but decreases with the 
number of levels of the factor B. 
For determining the minimin and the maximin size we can use Lemma 1 in both cases. 
 
In model I we also can test a hypothesis about the interaction effects. 
H0: "All ( ab)ij are zero" 
The alternative hypothesis is: 
HA: " At least two (ab)ij differs from zero, respectively." 
The test statistic is: 

 
FAB = MSA�B / MSR  

and is under H0   F((a-1)(b-1); ab(n-1)) distributed. The non-centrality parameter is 

( )ab
ba

n
ij

ji,

2

)1-)(1-( ∑⋅=λ . 

Before we give some examples we have to show the least and the most favorable situation for the 
interaction effects. 
 
Lemma 2: 
We consider a model I of the balanced two-way ANOVA or an analogue balanced multi-way ANOVA 
with two fixed factors A and B under the condition that the sums of the interaction effects (ab)ij of the two 
factors A and B (separately over each index) equal zero. 

Further let ( )[ ] ( )[ ] σδ ==− ijij abab minmax  with 2σ  as the error variance of the model. 
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Then the minimum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2
 is w.l.o.g. obtained for ( ) ( )( )

( ) δδ
a

a

ba

ba
ab

1
1

11
11

−=
−

−−= ; 

( ) ( )
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aba
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ab i ,...,2;

1
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1
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−−= δδ ; ( ) ( )

( ) bj
ba

a
ab j ,...,2;

1
1

1 =
−

−−= δ ; 

( ) ( ) bjai
ba

ab ij ,...,2;,...,2;
1

1 ==
−

= δ . 

If as well a as also b are even the maximum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2
 is given if half of the interaction effects equal 

δ
2
1−  and the remaining equal δ

2
1

. Then ( ) .
4

2

1 1

2 δab
ab

a

i

b

j
ij =∑∑

= =

 

Proof:  

a) We assume w.l.o.g. that ba ≤ . It is easy to see that ( ) ( ) 0
11

==∑∑
==

b

j
ij

a

i
ij abab  and 

( )[ ] ( )[ ] ( ) ( ) δ=−=− 111minmax iijij abababab  and all side conditions are fulfilled. We 

now consider 
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b) The equality sign occurs if and only if a = b. This expression depends besides δ only on a 
and b and is invariant against permutations of rows and/or columns which all are also 

solutions. The solution ( ) ( ) ( ) ( )
2

;
2 1111

δδ −==== baab abababab  and all other effects 

equal to zero fulfills the side conditions as well but leads to a larger value of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  

if a < b. This completes the proof. Thus the least favorable case is known. We give in 

Table 2 the value of ( )∑∑
= =

a

i

b

j
ijab

1 1

2

2

1

δ
 for some values of a and b.  

Table 2 Values of ( )∑∑
= =

a

i

b

j
ijab

1 1

2

2

1

δ
 for the least favourable 

 b 
a 2 3 4 5 
2  0.75 0.667 0.625 
3  1 0.888 0.833 
4   1 0.938 

case and some values of a and b. 
 

 b) under the side condition above no larger value of ( )∑∑
= =

a

i

b

j
ijab

1 1

2
 is possible. 
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For the most favorable case with at least one of the values a and b odd we only have a conjecture. 
 
Conjecture. 
We consider a model I of the balanced two-way ANOVA or an analogue balanced multi-way ANOVA 
with two fixed factors A and B under the condition that the sums of the interaction effects (ab)ij of the two 
factors A and B (separately over each index) equal zero. 

Further let ( )[ ] ( )[ ] σδ ==− ijij abab minmax  with 2σ  as the error variance of the model. 

Under the conditions above the maximum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is  

(i) For a even, b odd 
(ii)  For a odd, b even 
(iii)  a and b both odd 

obtained as the value occurring if the odd number is reduced to the next smaller even number. 

The maximum of ( )∑∑
= =

a

i

b

j
ijab

1 1

2  is for  

 (i) by ( ) ( )
4

1

1 1

2 −=∑∑
= =

ba
ab

a

i

b

j
ij  

(ii)  by ( ) ( )
4

1

1 1

2 −=∑∑
= =

ab
ab

a

i

b

j
ij  

(iii)  by ( ) ( )( )
4

11

1 1

2 −−=∑∑
= =

ba
ab

a

i

b

j
ij . 

Some arguments supporting this conjecture are shown in Rasch et al. (2011). 
 
Examples and R-Programs 
To calculate the minimum sample sizes minn  and maxn  we use the R-package OPDOE. 

Assume that six wheat varieties should be compared concerning their yield. For that the varieties will be 
cultivated at several farms. I the model I situation four farms have been selected, for model I the farms are 
randomly sampled from all farms in a country. The number n of plots per variety in model I and the 
number of farms sampled in model II has to be determined to satisfy the following conditions: Type I 
error probability α  = 0.05, and Type II error probability ≤β  0.1 if amax - amin σ2≥  . 
The OPDOE programs have the following structure: 
>size_x.two_way_cross.model_r_E( α, β, δ,a,b,q) 
with x = n or  x=b (in this case the b in the bracket is replaced by n); r = 1 or mixed, E = a or axb (when 
testing interaction effects) and q = “maximin” or “minimin”.  
Model I: Testing the main effects: 
>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,”max imin”) 
[1] 9 
>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,”min imin”) 
[1] 4 
Model I: Testing the interaction effects: 
>size_n.two_way_cross.model_1_axb(0.05,0.1,2,6,4,”m aximin”) 
[1] 48 
>size_n.two_way_cross.model_1_axb(0.05,0.1,2,6,4,”m inimin”) 
[1] 5 
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Mixed model: Testing the main effects: 
If we put n = 1 we obtain 
>size_b.two_way_cross.mixed_model_a(0.05,0.1,2,6,1, ”maximin”) 
[1] 35 
>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,1,”m inimin”) 
[1] 13 
If we put n = 2 we obtain 
>size_b.two_way_cross.mixed_model_a(0.05,0.1,2,6,2, ”maximin”) 
[1] 18 
>size_n.two_way_cross.model_1_a(0.05,0.1,2,6,4,2,”m inimin”) 
[1] 7 
It is the product bn what is (up to integer rounding) constant. 
For the nested classification an analogue procedure is applied. This and the different models and 
classification together with the R-programs can be found in Chapter 3 of Rasch et al. (2011). 
 

5 The three-way Analysis of variance 
 
In the three-way analysis of variance we have four classifications (cross, nested and two mixed) and 
several models with at least one fixed factor. For most of these cases sample size formula using the two 
lemmas above and the conjecture could be derived. In two cases a special approach was needed because 
no exact F-test exists and an approximate F-test using the Satterthwaite approximation [Satterthwaite 
(1946)] leads to problems with determining sample sizes – see Rasch, D, Spangl, B. and Wang, M. 
(2011). 
Writing GF f  or FG p  if factor G is nested within factor F and GxF  if both factors are cross 
classified and printing factor symbols in bold if a factor is random then we have the following cases: 
 

Classification Model equation 
CBA ××  yijkv = µ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv 
C×× BA  yijkv = µ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv 
CB ××A  yijkv = µ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv 
CBA ××  yijkv = µ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv 
CBA ff  yijkv = µ + ai + bj(i) + ck(ij) + eijkv  
CB ffA  yijkv = µ + ai + bj(i) + ck(ij) + eijkv        
CA ff B  yijkv = µ + ai + bj(i) + ck(ij) + eijkv       
Cff BA  yijkv = µ + ai + bj(i) + ck(ij) + eijkv       
Cff BA  yijkv = µ + ai + bj(i) + ck(ij) + eijkv       
CA ff B  yijkv = µ + ai + bj(i) + ck(ij) + eijkv       
CB ffA  yijkv = µ + ai + bj(i) + ck(ij) + eijkv       
CBA ff  yijkv = µ + ai + bj(i) + ck(ij) + eijkv       

( ) CBA f×  yijkv = µ + ai + bj + (ab)ij + ck(ij ) + eijkv   

( ) CA fB×  yijkv = µ + ai + bj + (ab)ij + ck(ij ) + eijkv    

( ) CfBA×  yijkv = µ + ai + bj + (ab)ij + ck(ij ) + eijkv     

( ) CfBA×  yijkv = µ + ai + bj + (ab)ij + ck(ij ) + eijkv   

( ) CB f×A  yijkv = µ + ai + bj + (ab)ij + ck(ij ) + eijkv   

( ) CBA f×  yijkv = µ + ai + bj + (ab)ij + ck(ij ) + eijkv   

( ) CBA ×f  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv   

( ) CB ×fA  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     

( ) CA ×Bf  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     
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( ) C×BA f  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     

( ) C×BAf  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     

( ) CA ×Bf  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     

( ) CB ×fA  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     

( ) CBA ×f  yijkv = µ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv     

We only show how to determine the size of the experiment for the case ( ) C×BAf  
We test the null hypothesis that the factor A has no effect on the observed random variable. 
 
Let us consider the case of a = 6 levels of A and b = 5 levels of B with α = 0.05 and β = 0.1 and δ = 0.5σ. 
In OPDOE we use the R-program  
> size_c.three_way_mixed_cxbina.model_5_a(0.05, 0.1 , 0.5, 6, 5, 
+ 2, "maximin") 
[1] 15 
> size_c.three_way_mixed_cxbina.model_5_a(0.05, 0.1 , 0.5, 6, 5, 
+ 2, "minimin") 
[1] 6 
As result we found the minimin size 6 and the maximin size 15 for the number of levels of the random 
factor C. 
We also can derive the test statistic for testing 
 

( ) ( ) 0oneleastat;,0:0 ≠∀= ijAij bHijbH  
 

F = 
MS
MS

BxCinA

BinA
  is under H0 F[a(b-1); a(b-1)(c-1)] –distributed with a (b-1) and a(b-1)(c-1) degrees of 

freedom.  
Let us again consider the case of a = 6 levels of A and b = 5 levels of B with α = 0.05 and β = 0.1 and δ = 
0.5σ. In OPDOE we use the R-program  
 
> size_c.three_way_mixed_cxbina.model_5_b(0.05, 0.1 , 0.5, 6, 5, 
+ 2, "maximin") 
[1] 113 
> size_c.three_way_mixed_cxbina.model_5_b(0.05, 0.1 , 0.5, 6, 5, 
+ 2, "minimin") 
[1] 9 
As result we found the minimin size 9 and the maximin size 113 for the number of levels of the 
random factor C. 
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Sequential Design for Comparing Two Binary Endpoints:
How to Minimize Type II Error

Karl Schlag∗

Department of Economics – University of Vienna, Vienna,
1180 Hohenstaufengasse 9, Vienna, Austria

Abstract: Assume that you wish to test whether the success probabilities of two
binary valued random variables differ. We compare two sampling schemes. Under
sequential sampling you sample one observation after another, for each sample you
are allowed to determine which variable to observe next based on the previously
observed outcomes. Under (simultaneous) balanced sampling each variable is sampled
equally often, independently of which outcomes are generated. We compare inference
under the exact randomized tests that minimize type II error. We find that if the
two success probabilities are not too similar under the alternative hypothesis then
balanced sampling is just as good as sequential sampling. Standard nonrandomized
tests for balanced sampling perform only slightly worse in such situations, that is
they perform almost as well as the theoretically best possible sequential sampling
tests.

Keywords: exact testing, unavoidable type II error, sequential design.

1 Introduction

We are interested in comparing different schemes for gathering data in view of later hypothesis
testing. In particular, we wish to understand the value of sequential sampling as compared to
balanced sampling. Under sequential sampling the designer gathers data by sequentially choosing
which variable to observe a realization from next given the previous observations. Under balanced
sampling, an equal number of realizations of each variable is observed. We derive insights for the
objective of comparing two binary endpoints (or binomial proportions).

To illustrate, assume that there is an even number of indistinguishable patients and two
possible treatments 1 and 2 where each treatment can lead to either a success or a failure. Under
balanced sampling, all patients are invited at the same time and each treatment is assigned to
equally many patients. Under sequential sampling, patients are invited one by one, the next
patient is only treated after the outcome of the previous treatment is known. The treatment
given to the k-th patient can thus be conditioned on the previous treatments and their outcomes.
So there are many different ways in which one can implement sequential sampling. Should
one continue with the same treatment if it was successful? Should one sample a treatment
more if there is higher variance in the outcomes? Of course one can mimic balanced sampling
under sequential sampling by assigning treatments alternatingly regardless of the outcomes.
So sequential sampling is weakly more powerful than balanced sampling as one can replicate
balanced sampling with the sequential sampling procedure but not vice versa. We wish to
investigate how much more powerful sequential sampling is from an ex-ante point of view, so
for unconditional inference. This is relevant as sequential sampling is intricate and costly to
implement.

How much better is sequential sampling than balanced sampling for testing if there is some
difference between the two treatments?† As outcomes are binary valued, the value of a treatment
∗Corresponding author: karl.schlag@univie.ac.at
†Our analysis will also shed light on the value of block sequential designs.
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can be identified by its success probability. The value of a sampling procedure will be measured
by the of the smallest possible type II error among all tests of equal success. We assume that
the designer is only interested in the difference between the two success probabilities p1 and p2,
hence we consider only alternative hypotheses that can be described in terms of the difference.
Specifically, we test the null hypothesis H0 : p1 ≤ p2 against the alternative hypothesis H1 : p1 ≥
p2 + d for some given d > 0.‡

In this paper, the value of inference of a test with type I error α is identified with its type II
error for this pair of hypotheses. For each sampling scheme we search for the test that has the
smallest type II error among the set of tests that have a given type I error α. We then compare
the minimal type II errors of the different sampling procedures. In particular we will derive a
best way to assign treatments under sequential sampling.

The result of our analysis can be considered surprising. In many situations, despite its
flexibility, sequential sampling yields no better inference than balanced sampling. As long the
two treatments are not too similar, so as long as d is not too small, the minimal type II error
is the same under balanced sampling and under sequential sampling. In such cases, a best way
to assign treatments under sequential sampling is to ignore the sequential nature and to instead
apply balanced sampling.

To show this result we first characterize the smallest type II error under full information
when both outcomes are observable for each patient. As this involves more information than
available under balanced sampling, we obtain a lower bound on the smallest possible type II error
under balanced sampling. Then we show via numerical calculations that this lower bound can
be attained under balanced sampling when d is not too small. In such cases, inference is made
under balanced sampling is as if there were full information. As sequential sampling provides
more information than balanced sampling but less than full information sampling the result is
proven.

A downside of the finding above is that it assumes that the designer uses randomized tests.
What does this mean for practical testing? When comparing success probabilities based on
balanced samples one typically either uses the test of Boschloo (1970) or the z test of Suissa and
Shuster (1985). These tests are nonrandomized and do not achieve the minimal type II error
under balanced sampling. However, their type II error is only slightly above the minimal type
II error when d is not too small. Combining this with our above results shows that standard
nonrandomized tests under balanced sampling perform almost as well as if both outcomes were
observable for each patient. For practical testing, in terms of making inference when treatments
are not too similar, we find that the advantage of sequential sampling is at most marginal.

Of course sequential sampling has its own merits. One may wish to improve inference away
from the least favorable distribution. One may wish to reduce the number of treatments by
stopping early when enough evidence has been gathered. One may wish to maximize the expected
number of successes achieved during sampling. In these cases our investigation can be considered
as a benchmark.

2 The Model

For a given set A let ∆A be the set of probability distributions that have support in A. Consider
Y = (Y1, Y2) ∈ ∆

(
{0, 1}2

)
and let pi = P (Yi = 1) for i = 1, 2. Given d ∈ (0, 1) we wish to

test the null hypothesis H0 : p1 ≤ p2 against the alternative hypothesis H1 : p1 ≥ p2 + d under
various sampling scenarios for gathering n observations where n is an even number.§

‡From this one-sided test and its mirror image one easily can construct an equi-tailed test of H0 : p1 = p2
against H1 : |p1 − p2| ≥ d.
§The tests we construct are easily extended to equi-tailed tests of H0 : p1 = p2 against H1 : |p1 − p2| ≥ d.
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A test generates a recommendation for whether to reject the null hypothesis given the sample.
For deriving our results we need to consider randomized tests, later we will show how to use these
results when implementing nonrandomized tests. So we identify a test with the probability φ of
rejecting the null hypothesis. The test φ is called nonrandomized if φ ∈ {0, 1} for any sampled
data, it is called randomized if it is not nonrandomized.

2.1 Full Information Sampling

Under full information sampling the test conditions on a sample of n independent realizations of
Y. This is also known as matched pairs, the doctor knows the outcome of each treatment for each
patient. Let y(n) be the observed sample where y(n)

ki is the realization of Yi in the k-th element
of the sample. A test φ is a mapping ×nk=1 {0, 1}2 → [0, 1] where φ

(
y(n)

)
is the probability of

rejecting H0 given data y(n).

2.2 Balanced Sampling

Under balanced sampling the test conditions on a sample of n/2 independent realizations of
Y1 and Y2. A test φ is a mapping {0, 1}n/2 × {0, 1}n/2 → [0, 1] where φ

(
y

(n/2)
1 , y

(n/2)
2

)
is the

probability of rejecting H0 given the n/2 observations y(n/2)
i of Yi, i = 1, 2.

2.3 Sequential Sampling

Under sequential sampling we need to specify a sampling procedure ζ and a test φ. The sampling
procedure specifies the variable from which the next observation is drawn conditional on the
history of choices and observations. Let h(k) be the sequence observations up to round k such
that h(k)

l ∈ {1, 2} × {0, 1} is the observation made in round l in which the outcome h(k)
l2 was

drawn from the variable with index h(k)
l1 . So the sampling procedure ζ is given by the mapping

ζ : ∪n−1
k=0 ({1, 2} × {0, 1})k → [0, 1] where ζ

(
h(k)

)
is the probability of observing a realization

from Y1 in round k + 1 conditional on the history h(k).

2.4 Testing

We recall that a test φ has level α if EY φ ≤ α for all Y ∈ ∆
(
{0, 1}2

)
such that p1 ≤ p2

and has type I error α if maxY {EY φ : p1 ≤ p2} = α. The type II error of φ is given by
maxY {EY (1− φ) : p1 ≥ p2 + d} . Throughout our analysis α will be held fixed. The unavoidable
type II error will refer to the smallest type II error among the tests that have level α, so it is
equal to minφ:φhassizeα maxY {EY (1− φ) : p1 ≥ p2 + d} . We say that a test attains the unavoid-
able type II error if its type II error is equal to the unavoidable type II error. Note that typically
the unavoidable type II error is only attained by randomized tests. For nonrandomized tests we
are interested in how much higher their type II error is than the unavoidable type II error, this
will be called the added type II error.

2.5 Inference under Full Information Sampling

We start by analyzing full information sampling which will become an important benchmark.
We first restrict attention to Y ∈ ∆ {(0, 1) , (1, 0)} , so the set of distributions where for each
patient exactly one of the two treatments yields a success. Under this restriction testing is very
simple. The hypotheses can be rewritten as H0 : P (Y = (1, 0)) ≤ 1

2 and H1 : P (Y = (1, 0)) ≥
1
2 (1 + d) . Consequently, the randomized binomial test attains the unavoidable type II error as
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it is uniformly most powerful. This test, denoted by φR, is characterized by a unique m ∈
{0, 1, .., n} and the following three conditions: φR

(
y(n)

)
= 1 when

∣∣∣
{
k : y

(n)
k = (1, 0)

}∣∣∣ > m,

φR

(
y

(n)
k

)
= 0 when

∣∣{k : y(k) = (1, 0)
}∣∣ < m and EY φR = α if P (Y = (1, 0)) = 1/2.¶ Note

that the type II error is attained when Y = Y d where Y d ∈ ∆ {(1, 0) , (0, 1)} is defined by
P
(
Y d = (1, 0)

)
= 1

2 (1 + d) .
Next we show how to extend φR to a test φF that attains the unavoidable type II error

under full information sampling, so when Y ∈ ∆
(
{0, 1}2

)
. For this we will randomly trans-

form observations belonging to {0, 1}2 into {(1, 0) , (0, 1)} with the (independent) probabilis-
tic mapping f defined by P (f (y) = (1, 0)) = 1 if y = (1, 0) , = 0 if y = (0, 1) and = 1/2
if y ∈ {(0, 0) , (1, 1)} . Note that the transformation f does not change the difference in the
success probabilities as Ef (Y1) − Ef (Y2) = EY1 − EY2. We construct the test φF by first
using f to transform each observation belonging to the sample y(n) to generate a new sample(
f
(
y

(n)
k

))n
k=1

belonging to {(1, 0) , (0, 1)}n and then applying φR. Formally, let φF be defined by

φF
(
y(n)

)
= EfφR

((
f
(
y

(n)
k

))n
k=1

)
for y(n) ∈ ×nk=1 {0, 1}2 . Given Y let ZY ∈ ∆ {(1, 0) , (0, 1)}

be defined by P (ZY = (1, 0)) = P (Y = (1, 0)) + 1
2P (Y ∈ {(0, 0) , (1, 1)}) . By construction,

EY φF = EZY
φR. In particular,

max
Y ∈∆({0,1}2)

{EY φF : p1 = p2} = max
Y ∈∆({0,1}2)

{EZY
φR : p1 = p2} = EY 0φR = α

and

max
Y ∈∆({0,1}2)

{EY (1− φF ) : p1 ≥ p2 + d} = max
Y ∈∆({0,1}2)

{EZY
(1− φR) : p1 ≥ p2 + d} = 1−EY dφR.

Since φR attains the unavoidable type II error when restricting attention to Y ∈ ∆ {(0, 1) , (1, 0)}
we have proven the following.

Proposition 1 φF attains the unavoidable type II error under full information sampling, the
value of the unavoidable type II error is given by

1− EY dφR.

The unavoidable type II error for our pair of hypotheses under full information sampling
can be found in the literature if one restricts attention to unbiased tests. Lehmann and Ro-
mano (2005, p. 138) namely find that the randomized version of McNemar’s test (McNemar,
1947) is uniformly most powerful among the unbiased tests. In contrast, we have not imposed
unbiasedness.‖

2.6 Inference under Balanced and Sequential Sampling

Note that neither balanced sampling nor sequential sampling can ever generate strictly more
information than full information sampling. Together with Proposition ?? this shows the follow-
ing.

Proposition 2 The unavoidable type II error under balanced sampling and under sequential
sampling is bounded below by

1− EY dφR.

¶|A| denotes the number of elements of the finite set A.
‖With a few additional arguments it is easy to show given the result above that the randomized version of

McNemar’s test also achieves the unavoidable type II error (1− EY dφR) among all tests.
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We wish to investigate circumstances in which balanced sampling is as good (in terms of
unavoidable type II error) as full information sampling, and hence as good as sequential sampling.
We first derive necessary conditions. Assume that there is a test φB for balanced sampling that
attains the unavoidable type II error under full information sampling. This means that

max
Y ∈∆({0,1}2)

{EY (1− φB) : p1 = p2 + d} = EY d (1− φR) .

Moreover, when facing Yd then any balanced sample contains the same information as if one
had observed full information. As φB cannot outperform φR when facing Y d we obtain that
EY d (1− φB) ≥ EY d (1− φR) . We combine these two statements.

Proposition 3 If a test for balanced sampling attains the unavoidable type II error under full
information sampling then it attains this value when Y = Y d.

So we search for a test with level α under balanced sampling that behaves like φR when facing
Y d and that has the property that its type II error equals 1− EY dφR. Let ȳi be the number of
successes observed of Yi in the balanced sample, so ȳi =

∑n/2
k=1 y

(n/2)
ik . A first idea is to consider a

test that rejects the null hypothesis when the number of successes observed of Y1 exceeds those
observed of Y2 by margin b ∈ N. So reject when ȳ1 > ȳ2 + b. Given that the test should exhibit
the same behavior when facing Y d as φR we obtain that b = n/2 +m (so b is unique) and that
there is no rejection if ȳ1 < ȳ2 + b. There are some degrees of freedom for determining behavior
when ȳ1 = ȳ2 + b. The only constraint is that its type I error is equal to α. Consider some
v ∈ {−1, 0, 1, .., b(n/2− b) /2c} . Let φb,v be the test with type I error equal to α that has the
following additional properties when ȳ1 = ȳ2 + b: φb,v = 1 if ȳ1 ≤ v or ȳ1 ≥ n/2 − v − b and
φb,v = η if v < y1 < n/2− v− b. So φb,v rejects the null hypothesis on the 2 (v + 1) points closes
to the boundary and rejects with constant probability otherwise. In particular, φb,−1 rejects
with constant probability whenever ȳ1 = ȳ2 + b. Whether or not η can be chosen when v 6= −1
so that the test has type I error α has to be checked numerically. Moreover, one has to check
numerically whether φb,v attains its type II error when Y = Y d. When both of these checks are
positive we have found for the given values of v and d that the test φb,v attains the unavoidable
type II error under full information sampling. One can then vary the value of the parameter v
to find more values of d that satisfies these two checks, so values of d where balanced sampling
is as good as full information sampling.

So we have generated a method for finding values of d where the unavoidable type II error
under balanced sampling is equal to that under full information sampling (and sequential sam-
pling). Our numerical simulations show that this works if d is not too small. Of course it is
conceivable that this equality holds for a value of d where there is no value of v that makes φb,v a
test with type I error α that attains this the unavoidable type II error. In fact, we do not know
how to find the unavoidable type II error under balanced sampling for values of d that are below
those derived by this procedure. We only know that it lies above the unavoidable type II error
under full information sampling given in Proposition ??.

In the following we report on the results of our numerical calculations. For each value of v
such that φb,v has type I error α we find that there is a threshold d (v) such that φb,v attains
the unavoidable type II error under full sampling when d ≥ d (v). We search for the value of v,
denoted by v∗, where d (v) is smallest and let d∗ = d (v∗) . The values are tabulated in Table 1
(Schlag, 2008).
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Table 1: α = 0.05

n 10 20 30 40 50 60 80 100 120 140

b 3 4 4 5 6 6 7 8 9 10
v∗ 0 2 1 3 6 5 9 13 26 24
d∗ 0.49 0.33 0.27 0.19 0.21 0.21 0.16 0.14 0.14 0.14

1− EY d∗φR 0.52 0.56 0.55 0.67 0.56 0.52 0.58 0.6 0.56 0.51

We summarize.

Remark 1 In all numerical computations we find that the unavoidable type II error under
balanced sampling is the same as it is under sequential sampling and full information sampling
as long as the unavoidable type II error under full information is below 0.5, which requires that
d is not too small.

2.7 Inference of Nonrandomized Tests under Balanced Sampling

Now we show how the above impacts our understanding of inference when implementing standard
nonrandomized tests. For comparing two binary endpoints we find exact tests of Boschloo (1970)
and Suissa and Shuster (1985). Both are uniformly more powerful than the Fisher exact test
(Fisher, 1935).∗∗ These tests will typically not attain the unavoidable type II error under full
information as they are, for practicality reasons, nonrandomized. We are interested in how far,
for a given value of d, their type II error is from the unavoidable type II error under balanced
sampling. We refer to this quantity as the added type II error. Following Remark ?? we can
compute the unavoidable type II error under balanced sampling when this is below 0.5. In Table
2 we show for α = 0.05 and different sample sizes the maximal added type II error where this
maximum is taken over all values of d where the unavoidable type II error is below 0.5. Note
from Table 2 how small the added type II errors of these two tests are. For instance, this table
shows for n = 20 and any given value for d that there does not exist a nonrandomized test under
sequential sampling (or under full information sampling) with level 0.05 that has a type II error
below 0.5 that falls below that of the test of Boschloo by more than 0.031.

Table 2: Maximal Added Type II Error when α = 0.05∗

n 20 30 40 50 60 80 100

z test 0.031 0.048 0.034 0.066 0.013 0.012 0.02
Boschloo test 0.031 0.0016 0.033 0.047 0.012 0.012 0.02

∗when the unavoidable type II error is below 0.5.

Another way to evaluate tests is to consider minimal sample sizes needed to guarantee type
II error to be below a given threshold. Table 3 (Schlag, 2008) shows the minimal sample size
need to guarantee type II error below 0.2 for various values of d when α = 0.05. In each case
the sample size needed to ensure that the unavoidable type II error under balanced sampling is
below 0.2 is the same it is under full information sampling. For instance, it shows for d = 0.25
and n ≤ 96 that there is no test under sequential sampling (or full information sampling) with
level 0.05 and type II error below 0.2 (we did not derive what happens for odd sample sizes).
However, if n ≥ 102 then the z test has these properties.
∗∗While this can be proven theoretically for the test of Boschloo (1970), for the z test we have to rely on

numerical evaluations of Suissa and Shuster (1985) available for α ∈ {1%, 2.5%, 5%} and 10 ≤ n/2 ≤ 150.
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Table 3: Sample Sizes Needed to Guarantee Type II Error Below 0.2 when α = 0.05

d 0.5 0.4 0.3 0.25 0.2

Minimal sample size 24 38 68 98 154
Sample size under z test 26 40 74 102 158

3 Conclusion

The results presented in this paper are more general as shown in Schlag (2008). They extend to
tests of noninferiority and superiority. They also extend to nonparametric tests when allowing
for distributions that can generate any outcome in [0, 1] , so to the case where Y ∈ ∆

(
[0, 1]2

)
.

The key insight is as follows. When the difference between the two treatments is not too small
under the alternative hypothesis, only outcomes with two unequal components are contained
in the support of the least favorable distribution. When observing one component one knows
the other component. More sophisticated sampling schemes are not needed when facing this
distribution.

The new insights can also be viewed in the light of counterfactual evidence. It is typically
not possible to assign two treatments independently to the same patient. Yet one is interested in
knowing how the two treatments compare for a given patient. While inference would be better if
counterfactual evidence were available, this research shows from an ex-ante (unconditional) per-
spective that it is as if standard nonrandomized tests under balanced sampling use counterfactual
evidence as long as treatments are not too similar whenever they are different.

The insights in this paper seem to be limited to comparing two binary endpoints. Once there
are three different treatments, it is not conceivable that the outcome of one treatment will reveal
the outcome of the two other treatments when facing a least favorable distribution.

Future research will look at whether our insights for comparing two treatments carry over to
conditional inference where one is interested in how the two treatments compare for the patients
that belong to the given sample (of size n). In this paper we considered unconditional inference,
where we are interested in how they compare for a patient that does not belong to the given
sample of n patients.
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Abstract: The 2-step procedure of Stein for construction of a confidence interval for the 
mean µ of one population or the difference ∆ of the means of two independent 
populations is used as test procedure to test the null hypothesis µ≤µ0 (one sample 
problem) resp. ∆≤∆0 (two sample problem) which preserves strictly the error probability 
(p ≤α for µ=µ0 resp ∆≤∆0) and power requirement (power ≥1-β for µ=µ1>µ0 resp 
∆=∆1>∆0) without specification of the population variance. The power requirement is 
equivalent to the requirement that the (1-α)-confidence-interval for µ resp. ∆ has a 
specified half-length bopt which does not depend on σ. At the first step a preliminary 
sample of size n resp. two independent samples of total size n are drawn and the sample 
mean resp. the means of the two samples and the sample variances are calculated. With 
the variance estimate(s) the sample size nopt is estimated which is necessary to achieve the 
half length bopt. If nopt≤n, the process is stopped. The null hypothesis is rejected, if the 
lower bound of the confidence interval for µ resp. ∆ is greater than µ0 resp ∆0, otherwise 
accepted. The process is also stopped, if the null hypothesis can be rejected with the t-test 
at the level α/2. If nopt>n and H0 is not rejected, additional nopt-n sample values are drawn. 
The lower bound of the (1-α)-confidence-interval for µ resp. ∆ is computed with the 
mean(s) of all data and the variance estimate(s) of the preliminary sample. H0 is rejected, 
if the lower bound is greater then µ0 resp. ∆0, otherwise accepted. By simulation studies it 
could be shown that this procedure preserves α and the power 1-β very well. If the size of 
the preliminary sample is not too small, the average sample number of the procedure can 
be much smaller than the sample size which is necessary for a one-step test to achieve the 
power requirements.  
 
Keywords: comparison of means, sample size determination without specification of the 
variance, Stein's two step procedure 

 
 
 

1 Introduction 
 
The t-test is one of the oldest statistical tests. It was introduced 1908 by W.S. Gosset writing under the 
pseudonym 'Student' to test hypotheses about the means of populations (Student 1908). The test 
statistic t is the ratio between the deviation of the observed sample mean (one sample problem) or 
difference of the means of two independent samples (two samples problem) from the null hypothesis 
and an independent estimate of the standard error. The power of the test depends not only on the 
deviation of the actual population mean from the null hypothesis, but also on the variance of the 
population. Therefore, sample size determination at the design stage needs information about this 
variance. This can be avoided with the procedure proposed by C. Stein (1945) to achieve a confidence 
interval for the mean with given length. The use of this procedure for sample size determination and 
hypothesis tests is shown in the following. 
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2 The procedure 
 
2.1 One-sample  
Consider a continuously distributed random variable with population mean (expected value) µ and 
population variance σ2. We want to test the null hypothesis H0 µ≤µ0 against the alternative H1 µ>µ0. 
Given a sample of n independent realizations xi, the test statistic is: 

                                                      0x µ
t n

s

−=                                                               (1) 

with the sample mean 
1

1 n

i
i

x x
n =

= ∑  and standard deviation 2

1

1
( )

1

n

i
i

s x x
n =

= −∑
−

. For sufficient large 

n, the meanx  can be assumed as normal distributed with population mean µ and variance σ2/n and s2 
as distributed like σ2

χ
2/(n-1) independent from x , where χ2 is a Chi2 distributed random variable with 

n-1 degrees of freedom (df). With these assumptions, the test statistic t has for µ=µ0 a central t-
distribution with n-1 df (denoted by Ft,n-1(…)). The null hypothesis is rejected with error probability α, 
if t is greater then the 1-α quantile t1-α,,n-1 of the central t-distribution with n-1 df. 
 
As an equivalent procedure, H0 is rejected, if the lower bound of the (1-2α)-confidence-interval for µ 
is greater than µ0 (remark that the (1-2α)-confidence-interval is used because of the one-sided test): 

0 1 , 1 0Re , /nject H if x t s nα µ− −− >                                       (2) 

The sample size n is determined by the requirement that the power for µ1, i.e. the probability to reject 
Ho, if µ=µ1>µ0, is 1-β: 

1 0 1( ) ( | ) 1Power P rejct Hµ µ µ β= = ≥ −                                            (3) 

 The distribution of t for µ=µ1 is the noncentral t-distribution Fnct,n-1,nc(t)  with n-1 degrees of freedom 

and the noncentrality parameter nc= 1 0( ) /n µ µ σ− . So we have: 

1 1 1 0( ) 1 ( , 1, ( ) / ) 1nctPower F t n nαµ µ µ σ β−= − − − ≥ −                          (4) 

The necessary sample size n is the smallest natural number n which solves this inequality. The 
solution must be done iteratively.  
 
Whereas the reference value µ1 is derived by problem oriented considerations, a reasonable estimate 
for σ is often not or only with great uncertainty known. Therefore it would be desirable to determine 
the sample size n without knowledge of σ. This is possible with Stein's (1945) procedure. This is a 2-
step procedure to construct a (1-α)-confidence interval for µ whose half length is not greater than a 
prefixed value bopt. At the first step a sample of (small) size n is drawn and the statisticsx and s are 

calculated. If the half length of the (1-α)-confidence-interval, i.e. b1= 1 / 2, 1 /nt s nα− − ), is equal or less 

than bopt, the procedure is stopped and 1 / 2, 1 /nx t s nα− −± is the desired interval. If b1>bopt, additional 

nopt-n sample values are drawn where nopt is the smallest integer equal or greater than 2 2 2
1 / 2, 1 /n optt s bα− − . 

The confidence interval is computed with mean totx of all nopt sample values and the half length 

1 / 2, 1 /n optt s nα− − with s and n of the first sample. As s2 is independent of totx and distributed like 

χ
2σ2/(n-1), the ratio ( ) /tot optx n sµ− has a central t-distribution with n-1 df. Therefore the interval 

covers µ with probability 1-α and its half length is obviously not greater than bopt  
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To apply this procedure to sample size determination and test with the t-statistic, two points must be 
cleared: 
1) The error probabilities α and β must be adequately spent to the two steps. 
2) The half length bopt which corresponds to the power requirement (3) must be evaluated 
 
Ad 1): H0 is rejected, if either the lower bound of the confidence interval which is calculated with the 
data of the first sample or that which is calculated with the mean totx of both samples and n and s of 

the first sample is greater than µ0. H0 can be falsely rejected at both steps and the error probability α 
must be spent adequately. An equal spending, i.e. α/2 to both steps, seems adequate without further 
preferences. H0 is rejected after the first or second step, if the lower bound of the corresponding (1-α)-
confidence-interval is greater than µ0. As at the first step acceptance of H0 for µ=µ1 seems very 
unlikely, the total error probability β is spent to the second step.    
 
Ad 2): We consider the (1-α)-confidence-interval for µ calculated with the sample meantotx of a 

sample with size n’ and the variance estimate s2 calculated with the first n≤n’ sample values. This 
estimate is independent from totx and distributed like χ2σ2/(n-1) with n-1 df. H0 is rejected, if the lower 

bound of the confidence interval: 1 / 2, 1 / 'tot nlb x t s nα− −= −  is greater than µ0. The power requirement 

(3) means that for µ=µ1 lb must be greater than µ0 with probability ≥(1-β). The statistic 

1( ) ' /tott x n sµ= −  is for µ=µ1 central t-distributed with n-1 df.  Therewith we get: 

1 1 0
1 / 2, 1 0 1 1 /2, 1 1

( ) ' ( ) '
1 ( / ' | ) ( | )tot

tot n n

x n n
P x t s n P t

s sα α
µ µ µβ µ µ µ µ µ− − − −

− −− ≤ − > = = > − =

 

= 1 0
, 1 1 / 2, 1

( ) '
( )t n n

n
F t

s α
µ µ

− − −
− −                               (5) 

From this follows: 1 0
1 / 2, 1 1 , 1

( ) '
( )n n

n
t t

s α β
µ µ

− − − −
− ≥ + or          

2

1 / 2, 1 1 , 1

1 2

' n nt t
n s α β

µ µ
− − − −+ 

≥  − 
                                              (6) 

We denote the smallest integer which fits inequality (6) by nopt and the half length of the (1-α)-
confidence-interval derived with nopt as bopt. It is:  

    1 /2, 1
1 / 2, 1 1 0

1 / 2, 1 1 , 1

( )n
opt n

n nopt

ts
b t

t tn
α

α
α β

µ µ− −
− −

− − − −

= = −
+

                                  (7) 

The power requirement (3) is fulfilled, if H0 is tested with a (1-α)-confidence-interval whose half 
length is equal or smaller than bopt.. Notice that bopt depends on α, β, µ1-µ0 and the size n of the first 
sample, but not on σ. 
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2.2 Two samples 
 
In the two samples problem, hypotheses about the difference in the means of two independent 
populations, one with mean µ1 and standard deviation σ1, the second with mean µ2 an standard 
deviation σ2, are tested in two steps. Like in the one-sample problem, the one-sided null hypothesis 
H0: ∆=µ1-µ2≤∆0 is tested against the alternative ∆>∆0. The error probability to reject H0 at the first or 
second step, if it holds, is restricted to α/2 and the power to reject H0, if ∆=∆1, should be ≥1-β.  The 
test is performed with (1-α)-confidence-interval for ∆. The power requirement is achieved, if the 
sample numbers n1 and n2 are large enough that the half length of the (1-α)-confidence-interval for ∆ 
is: 

                                                1 / 2,
1 0

1 / 2, 1 ,

( )df
opt

df df

t
b

t t
α

α β

−

− −

= ∆ − ∆
+

                                                  (8) 

where df are the degrees of freedom of the variance estimate which is defined later. The sample 
numbers n1 and n2 can be different. The ratio R=n2/n1 is fixed in advance. If n=n1+n2, the relations: 
n1=n/(1+R) and n2=nR/(1+R) hold. 
 
In the first step a sample of size n1 is drawn from population 1 and a sample of size n2 form population 

2. The sample means1x , 2x  and variances 21s , 2
2s  are calculated. The difference1x - 2x is an estimate of 

∆. To get an estimate for the variance of the difference, two situations must be considered. 
 

2.2.1 The variances of the two populations are equal ( 2 2 2
1 2σ σ σ= = ): 

An estimate for the common variance σ2 is: 

 2 2 2
1 1 2 2 1 2( ( 1) ( 1)) /( 2)s s n s n n n= − + − + −                                   (9) 

This estimate is assumed to be distributed like σ2
χ

2/(n1+n2-2) with df= n1+n2-2. With this estimate, the 
lower bound of the (1-α)-confidence-interval for ∆ is  

1 21 1 2 1 / 2, 2
1 2

1 1
n nlb x x t s

n nα− + −= − − +                                       (10) 

and the half length is:                    
1 21 1 / 2, 2

1 2

1 1
n nb t s

n nα− + −= +                                           (11) 

The procedure is stopped and H0 rejected, if lb1>∆0. The procedure is also stopped, if b1≤bopt.  H0 is 
rejected, if lb1>∆0, otherwise accepted. 
 
If H0 is not rejected at step1 and b1>bopt, additional nopt1- n1 values are drawn from the first population 
and nopt2-n2 from the second population, where nopt1=nopt/(1+R), nopt2=noptR /(1+R) and nopt is : 

1 2 1 2

22
1 / 2, 2 1 , 22

1 0

(1 ) n n n n
opt

t tR
n s

R
α β− + − − + −

 + +
 =  ∆ − ∆   

                                  (12)    

The mean 1totx  is calculated from all nopt1 values drawn from the first population, the mean 2totx  from 

the nopt2 values drawn from the second population and the lower bound lb2, calculated with the 
estimate s of the first step, is:  

1 22 1 2 1 /2, 2
1 2

1 1
tot tot n n

opt opt

lb x x t s
n nα− + −= − − +                                  (13) 

H0 is rejected, if lb2>∆0, otherwise accepted. 
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2.2.2 The variances of the two populations are unequal ( 2 2
1 2σ σ≠ ):  

Estimate for 2
1σ  is the sample variance 21s  and for 2

2σ  the sample variance 22s  drawn at the first step. 

According to the Satterthwaite-Welch approximation (Satterthwaite 1946; Welch 1947) the statistic: 

1 2 0

2 2
1 2

1 2

x x
t

s s

n n

− − ∆=
+

                                                      (14) 

 is assumed as central t-distributed under ∆=∆0 with 

  
2 2 2
1 1 2 2

2 2 2 2
1 1 1 2 2 2

( / / )

( / ) /( 1) ( / ) /( 1)

s n s n
df

s n n s n n

+=
− + −

                            (15) 

 
After the first step the procedure is stopped and H0 rejected, if 

2 2
1 1 2 1 /2. 1 1 2 2 0/ /dflb x x t s n s nα− ∆= − − + >                            (16)  

The process is also stopped, if 2 2
1 1 / 2, 1 1 2 2/ /df optb t s n s n bβ−= + ≤ ; H0 is rejected, if lb1>∆0 , otherwise 

accepted. 
 
If H0 is not rejected at step 1 and b1>bopt, additional nopt1-n1 values are drawn from the first population 
and nopt2-n2 from the second one, where nopt1=nopt/(1+R), nopt2=noptR/(1+R) and nopt is : 

2

1 /2. 1 ,2 2
1 2

1 0

(1 )( / ) df df
opt

t t
n R s s R α β− −+ 

= + +  ∆ − ∆ 
                               (17) 

The mean 1totx  is calculated from all nopt1 values drawn from the first population, the mean 2totx  from 

all nopt2 values drawn from the second population and the lower bound lb2 of the (1-α)-confidence-
interval is:  

2 2
1 2

2 1 2 1 /2,
1 2 2

tot tot df
opt opt

s s
lb x x t

n nα−= − − +                           (18) 

 
H0 is rejected, if lb2>∆0, otherwise accepted. 
 
3 Example 
 
In a controlled clinical study the blood-pressure-lowering effect of a new drug 1 should be compared 
with that of the standard drug 2 after a treatment of 4 weeks. Effect variable is the percentage 
reduction of blood pressure after 4 weeks. Patients are randomly and double blind assigned to the 
study treatments. The new drug 1 is considered as non-inferior to the standard drug, if the population 
mean µ1 of the effect variable is either greater or at least 10% lower than the population mean µ2 of the 
standard drug 2. Denoting with ∆ the difference µ1-µ2, the null hypothesis H0: ∆≤  -10% should be 
tested against the alternative ∆ >-10% with error probability α=0.05 and power 1-β=0.95 for ∆=0%. 
The total sample size nopt (assuming equal sample sizes for both groups: nopt1=nopt2=nopt/2) is 
determined with the two step procedure. At the first step n1=9 patients are treated with drug 1 and a 
mean 1x =15% and standard deviation s1=8% were observed. With the standard drug 2 n2=12 patients 

were treated and mean 2x =18% and standard deviation s2=12% were observed.  

Assuming equal variances (σ1
2=σ2

2=σ2), b1=9.7%, lb1= -12.7% and bopt=5.5%. The necessary total 
sample size for the power requirements is nopt =65. In the second step additional 44 patients (23 for 
treatment 1 and 21 for treatment 2) should be recruited. 
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Assuming unequal variances (σ1
2 ≠σ2

2), b1=9.2%,lb1= -12.2% and bopt= 5.47%. The necessary total 
sample size for the power requirement is nopt=61. In the second step additional 40 patients (21 for 
treatment 1 and 19 for treatment 2) should be recruited. 
 

4 Simulation results 
 
To check the feasibility of the procedure, two simulation studies with different settings of the 
population parameters were performed; each setting with 10 000 repetitions. In the first simulation 
study two independent samples of normal distributed data were generated and the two step t-test 
procedure applied to test the null hypothesis ∆≤0 against the alternative hypotheses ∆>0. The error 
probability α to reject H0 wrongly was set to 0.05, the error probability β to accept H0, if ∆=1, also to 
0.05. The population standard deviation σ was set to 1 for both samples. The population means were 
set in half of the simulations to 0 for both samples (corresponds to ∆=0) and in the other half in the 
first sample to 1 and in the second one to 0 (corresponds to ∆=1). The same sample size was assumed 
for both samples. Simulations were performed with the sample size n (=n1+n2) at the first step which 
are 0.2, 0.5 and 0.8-fold of the sample size nfix which is necessary to achieve the power requirement, if 
the t-test is performed in one step and the standard deviation σ is known. The results of the 
simulations are shown in table 1. 
 
In the second simulation study the same parameter settings were used except the assumption of 
unequal population standard deviations (σ1=1, σ2=2). Correspondingly, separate variance estimates 
were used for the samples and the Satterthwait-Welch approximation was applied for the t-
distribution. The results are shown in table 2. 
 
The rows of the tables show: 
• bopt = half length of the optimal (1-α)-confidence-interval corresponding to the power requirement  
• A(nopt) = Average of the sample size nopt (=npot1+nopt2) necessary for power requirement  
• P(b1≤bopt) = proportion of b1≤bopt  
• P(H0 rejected at step1, if b1≤bopt)= proportion to reject H0 at step 1, if b1≤bopt 
• P(H0 rejected at step1, if b1>bopt)= proportion to reject H0 at step 1, if b1>bopt 
• P(H0 rejected at step1, total)= proportion to reject H0 at step 1 
• P(stop at step 1) = proportion to stop at step 1 
• P(H0 rejected at step2)= proportion to reject H0 at step 2, if this step is reached 
• P(H0 rejected at either step)= proportion to reject H0 at step 1 or 2 
• ASN = average sample number= the sum of the sample number n at step 1, multiplied with the 

proportion to stop at step 1 and the sample number nopt multiplied with the proportion to perform 
step2. 

 
The most important result of all simulations is that for all settings α and β are strictly kept. The two-
step procedure is conservative.  A(nopt) and ASN are for n=0.2nfrix much greater than for 0.5nfix and 
0.8nfix, but differ only little between 0.5nfix and 0.8nfix. The choice n=0.5nfix seems optimal, if one has 
some idea about the population variances.  
 
The proportion P(b1≤bopt) is very small and acceptance of H0 at step1 for ∆=∆1 very seldom. Spending 
all error probability β to the second step is therefore justified. 
  
ASN is smaller for ∆=∆1 than for ∆=∆0. For n=0.5nfix or n=0.8nfix, ASN is even smaller than nfix. This 
means that for not too small sample sizes n at the first step the two-step procedure is in the average 
advantageous against the one step t-test with known variance. 
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Table 1: Results of simulation study 1 (equal variances) 

Simulation of 10000 
normal distributed data 
to test ∆=0 against ∆=1 

α=0.05    β=0.05 

µ1=0 µ2=0 
σ1=1 
σ2=1 

nfix=45 
n=9 

µ1=1 µ2=0 
σ1=1 
σ2=1 

nfix=45 
n=9 

µ1=0 µ2=0 
σ1=1 
σ2=1 

nfix=45 
n=23 

µ1=1 
µ2=0 
σ1=1 
σ2=1 

nfix=45 
n=23 

µ1=0 
µ2=0 
σ1=1 
σ2=1 

nfix=45 
n=36 

µ1=1 
µ2=0 
σ1=1 
σ2=1 

nfix=45 
n=36 

bopt .5552 .5552 .5472 .5472 .5458 .5458 
E(nopt) 73.0360 73.5487 58.3497 58.2700 55.9531 56.1510 
P(b1≤bopt) .0037 .0018 .0071 .0060 .0559 .0568 
P(Ho rejected at step 1) 

if b1≤bopt 
if b1>bopt 

total 

 
.0015 
.0243 

.00258 

 
.0015 
.2579 
.2594 

 
.0016 
.0255 
.0271 

 
.0053 
.6309 
.6362 

 
.0039 
.0204 
.0243 

 
.0528 
.7800 
.8328 

P(stop at set 1) 0.0280 .2597 .0326 .6369 .0763 .8368 
P(H0 rejected at step 2) .01698 .9475 .0151 .8827 .0106 .7720 
P(H0 rejected at either 
step) 

.0423 .9608 .0376 .9567 .0341 .9588 

ASN 71.243 56.7854 57.1973 35.8065 54.4306 39.2886 
 
Table 2: Results of simulation study 2  

Simulation of 10000 
normal distributed data 
to test ∆=0 against ∆=1 

α=0.05    β=0.05 

µ1=0 µ2=0 
σ1=1 
σ2=2 

nfix=110 
n=22 

µ1=1 µ2=0 
σ1=1 
σ2=2 

nfix=110 
n=22 

µ1=0 µ2=0 
σ1=1 
σ2=2 

nfix=110 
n=55 

µ1=1 
µ2=0 
σ1=1 
σ2=2 

nfix=110 
n=55 

µ1=0 
µ2=0 
σ1=1 
σ2=2 

nfix=110 
n=88 

µ1=1 
µ2=0 
σ1=1 
σ2=2 

nfix=110 
n=88 

bopt .5488 .5488 .5456 .5456 .5448 .5448 
mean(nopt) 152.9520 153.4067 138.3551 138.6208 134.7562 135.1334 
P(b1≤bopt) .0000 .0000 .0001 .0002 .0157 .0129 
P(Ho rejected at step 1) 

if b1≤bopt 
if b1>bopt 

total 

 
.0000 
.0263 
.0263 

 
.0000 
.2867 
.2867 

 
.0000 
.0250 
.0250 

 
.0002 
.6311 
.6313 

 
.0015 
.0226 
.0241 

 
.0119 
.8219 
.8338 

P(stop at set 1) .0263 .2867 .0251 .6313 .0383 .8348 
P(H0 rejected at step 2) .0215 .9383 .0176 .8812 .0120 .7403 
P(H0 rejected at either 
step) 

.0472 .9560 .0422 .9562 .0356 .9561 

ASN 149.5080 115.7324 136.1522 85.8310 132.9654 95.7864 
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Abstract: In applications often more than one dependent variable is observed in
each experimental unit. In some of these situations the explanatory variables may
be adjusted separately for the components in these models. For example, if one is
interested in both pharmacokinetics and pharmacodynamics, the time points need
not be identical for the measurements of the two quantities within one subject. As
the observations will be correlated within one unit, the data may be described by a
multivariate model, which has the structure of a seemingly unrelated regression.

Keywords: multivariate linear model, seemingly unrelated regression, D-optimal
design, product type design.

1 Introduction

The model of seemingly unrelated regression (SUR) has been introduced by Zellner (1962) and
since then various types of it are playing an important role in many areas of science. The
determination of D-optimal designs for such models, which is the aim of the present work, can
be based on a multivariate equivalence theorem by Fedorov (1972) and is related to results
by Kurotschka and Schwabe (1996), where design problems for multivariate experiments are
reduced to their univariate counter-parts, and uses techniques concerning product type designs
derived by Schwabe (1996). By this tools for SUR models, in which an intercept is included in
each component, it can be shown that the D-optimal design can be generated as the product of
marginal designs, which are D-optimal in the univariate marginal models for the components.

The paper is organized as follows: In the second section we specify the model and characterize
optimal designs in the third section. In section 4 the results are illustrated by means of a simple
example. Finally, section 5 contains some conclusions.

2 Model specification

The model contains m-dimensional multivariate observations for n individuals. The components
of the multivariate observations can be heterogeneous, which means that the response can be
described by different regression functions and different experimental settings, which may be cho-
sen from different experimental regions. Then the observation of the jth component of individal
i can be described by

Yij = fj(xij)
>βj + εij =

pj∑

l=1

fjl(xij)βjl + εij , (1)

where fj = (fj1, ..., fjpj )
> are the known regression functions and βj = (βj1, ..., βjpj )

> the
unknown parameter vectors for the jth component and the experimental setting xij may be
chosen from an experimental region Xj .

Denote by Yi = (Yi1, ..., Yim)> and εi = (εi1, ..., εim)> the multivariate vectors of observations
and error terms, respectively, for individual i and correspondingly the block diagonal multivariate
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regression function

f(x) = diag (fj(xj))j=1,...,m =




f1(x1) · · · 0
...

. . .
...

0 · · · fm(xm)




for the multivariate experimental setting x = (x1, ..., xm)> ∈ X = ×n
j=1Xj .

Then the individual observation vector ca be written as

Yi = f(xi)
>β + εi , (2)

where β = (β>1 , ...,β
>
m)> is the complete stacked parameter vector for all components. For the

error vectors εi it is assumed that they have zero mean, that they are uncorrelated across the
individuals and that they have a common positive definite covariance matrix Cov (εi) = Σ within
the individuals.

Finally, denote by Y = (Y>1 , ...,Y
>
n )> and ε = (ε>1 , ..., ε

>
n )> the stacked vectors of all

observations and all error terms, respectively. Then we can write the complete observation
vector as

Y = Fβ + ε , (3)

where F = (f(x1), ..., f(xn))> is the complete experiment design matrix. The complete obser-
vational error ε then has the covariance matrix V = Cov(ε) = In ⊗ Σ, where In is the n × n
identity matrix and “⊗” denotes the Kronecker product.

If we assume the covariance matrix Σ and, hence V known, we can estimate the parameter
β efficiently by the Gauss-Markov estimator

β̂GM = (FTV−1F)−1FTV−1Y (4)

with its covariance matrix equal to the inverse of the corresponding information matrix

M = FTV−1F =
n∑

i=1

f(xi)Σ
−1f(xi)

> (5)

which is the sum of the individual information

Remark 2.1 The univariate marginal models of the components have the following form

Y(j) = F(j)βj + ε(j) , (6)

where Y(j) = (Y1j , ..., Ynj)
> and ε(j) = (ε1j , ..., εnj)

> are the vectors of observations and errors
for the jth component, respectively, and F(j) = (fj(x1j), ..., fj(xnj))

> is the design matrix for
the jth marginal model. The corresponding error terms are uncorrelated and homoscedastic,
Cov (ε(j)) = σ2j In, where σ

2
j = σjj is the jth diagonal entry of Σ.

3 Optimal designs

We can define an experimental design ξ =

(
x1 . . . xk

w1 . . . wk

)
by the set of all different experimen-

tal settings xi = (xi1, . . . , xim), i = 1, ..., k, with the corresponding relative frequencies wi = ni
n ,

where ni is the number of replications at xi, Then the corresponding standardized information
matrix can be obtained as

M(ξ) =
k∑

i=1

wif(xi)Σ
−1f(xi)

>. (7)
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For analytical purposes we consider approximate designs, for which the weights wi ≥ 0 need
not be multiples of 1

n , but only have to satisfy
∑k

i=1wi = 1. As information matrix are not
necessarily comparable, we have to take some real-valued criterion function of the information
matrix. In this paper we will adopt the most popular criterion of D-optimality, which aims
at maximizing the determinant of the information matrix. This is equivalent to minimizing
the volume of the confidence ellipsoid in the case of Gaussian noise: A design ξ∗ is said to be
D-optimal, if det M(ξ∗) ≥ det M(ξ) for all other competing designs ξ.

A useful tool for checking the performance of a given candidate design is a multivariate
version of the equivalence theorem for D-optimality (see Fedorov (1972), theorem 5.2.1):

Theorem 3.1 The approximate design ξ∗ is D-optimal in the multivariate linear model if and
only if

trace
(

Σ−1f(x)>M(ξ∗)−1f(x)
)
≤ p , (8)

for all x ∈ X , where p =
∑m

j=1 pj is the number of parameters in the model.

The quantity ϕ(x; ξ) = trace (Σ−1f(x)>(M(ξ))−1f(x)) will often be called the sensitivity
function of the design ξ, which shows which experimental settings are “most informative”. In
particular, for an optimal design ξ∗ the sensitivity function attains its maximum p at the support
points.

The quality of a competing design ξ can be measured in terms of its D-efficiency

effD(ξ) =

(
det M(ξ)

det M(ξ∗)

)1/p

(9)

compared to the D-optimal design ξ∗. The efficiency states, how much less observations are
required, when the optimal design ξ∗ is used instead of ξ.

To obtain a complete characterization of the D-optimal designs we have to require that all
marginal models related to the components contain an intercept, fj1(x) ≡ 1, say. Then the
following general result holds.

Theorem 3.2 Let ξ∗j be D-optimal for the jth marginal component (??) on the marginal design
region Xj with an intercept included, j = 1, ...,m, then the product type design

ξ∗ = ⊗m
j=1ξ

∗
j (10)

is D-optimal for the SUR model (??) on the design region X = ×m
j=1Xj.

The sensitivity function ϕ does not depend on Σ.

The proof is based on an application of the equivalence theorem ?? after an orthogonalization
with respect to the constant regression functions fj1. Theorem ?? may fail to hold, if the
regression functions of the marginal components do not contain an intercept.

4 Example: Bivariate straight line regression

To illustrate the results we consider the SUR model with simple straight line regression models
for the components,

Yij = βj0 + βj1xij + εij . (11)

on the unit interval X1 = X2 = [0, 1] as experimental regions. Then it is well-known that the

D-optimal designs for the marginal models ξ∗1 = ξ∗2 =

(
0 1

1/2 1/2

)
assign equal weights to each

Optimal Design of Experiments – Theory and Application, Vienna 2011

172



Figure 1: Sensitivity function ϕ for the D-optimal design ξ∗1 ⊗ ξ∗2

of the endpoint of the interval. By Theorem ?? the product type design

ξ∗ = ξ∗1 ⊗ ξ∗2 =

(
(1, 1) (0, 0) (1, 0) (0, 1)
1/4 1/4 1/4 1/4

)

is D-optimal for the SUR model (??) on X = [0, 1]2.
The corresponding sensitivity function

ϕ(x; ξ∗) = trace(Σ−1f(x)>M(ξ∗)−1f(x)) = 4− 4x1 + 4x21 − 4x2 + 4x22 (12)

is plotted in figure 1. It can be easily seen that the sensitivity function is independent of Σ and
satisfies the condition ϕ(x; ξ∗) ≤ p = 4 for all x ∈ X .

An obvious alternative would be a multivariate linear regression design

ξ0 =

(
(1, 1) (0, 0)
1/2 1/2

)
,

where x1 = x2 is required and the corresponding marginals of ξ0 are optimal in the marginal
models. While the statistical analysis would simplify for such a design, as the Gauss-Markov
estimator reduces to ordinary least squares for any Σ, the D-efficiency

effD(ξ) = (1− %2)1/4

compared to the D-optimal design ξ∗ depends heavily on the correlation % = σ12/(σ1σ2) and
tends to zero as |%| tends to one. The corresponding behavior is depicted in figure 2.

5 Conclusions

While the data analysis is well developed for SUR models, there seemed to be no results available
on design optimization in such models so far. To fill this gap we establish that under certain
regularity conditions D-optimal designs for seemingly unrelated regression and related multivari-
ate linear models can be generated as products of the D-optimal designs for the corresponding
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Figure 2: D-efficiency of the multivariate linear regression design ξ0

univariate models of the single components. This construction turns out to yield optimal de-
signs independent of the covariance structure of the components. Thus design optimization for
SUR models can be reduced to univariate problems, for which the theory is well developed. In
the special case that the components share the same model structure it might be tempting to
simplify the design by letting the experimental settings equal across all components within each
unit. Then the observations would result in a MANOVA or multivariate regression model and
the analysis would be essentially facilitated. However, an example shows that the efficiency of
such MANOVA designs may substantially decrease, if the correlation between the components
increases.

References

Fedorov V.V. (1972): Theory of Optimal Experiments. Academic Press, New York.

Kurotschka, V.G. and Schwabe, R.(1996): The Reduction of Design Problems for Mul-
tivariate Experiments to Univariate Possibilities and their Limitations . In: E. Brunner and
M. Denker (Eds.), Research Developments in Probability and Statistics. Festschrift in Honor
of Madan L. Puri on the Occasion of his 65th Birthday. VSP, Utrecht 193–204.

Schwabe, R. (1996): Optimum Designs for Multi-factor Models.Springer, New York.

Zellner, A. (1962): An Efficient Method of Estimating Seemingly Unrelated Regression Equa-
tions and Tests for Aggregation Bias. Journal of the American Statistical Association, 57,
348-368.

Optimal Design of Experiments – Theory and Application, Vienna 2011

174



Integrated Design of Experiments and Analysis of Results with the offering 

of JMP® and SAS® 

Dr. Gerhard Svolba
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Abstract: To reveal or model relationships between an input or factor and an output or 

response, the best approach is to deliberately change the first and see whether the second 

changes, too: Actively manipulating factors according to a pre-specified design is the best 

way to gain useful, new understanding. However, whenever there is more than one factor 

– that is, in almost all real-world situations – a design that changes just one factor at a 

time is essentially useless. To properly uncover how factors jointly affect the response, 

design of experiments (DOE) come into play, which is the focus of this conference.  

JMP offers a complete library of tried and tested classical DOE designs, but also an 

innovative custom design capability that tailors your design to answer specific questions 

without wasting precious resources. Once the data has been collected, JMP and SAS 

streamline the analysis and model building so you can easily see the pattern of response, 

identify active factors and optimize responses.  

This presentation shows the leading-edge JMP offering for Design of Experiments and 

data analysis and illustrates how SAS and JMP are integrated. See also 

http://www.jmp.com/applications/doe/index.shtml 

 

Keywords: SAS, JMP, Design of Experiments, Usability, ODE, Integration 

1 Introduction -- Integration of SAS and JMP 

1.1 Historic Prejudices 

Historically there are some prejudices about SAS, which include: 

 SAS Analyses can only be executed via a complicated syntax 

 SAS Graphs are hard to create, their appearance is very clumpy 

 SAS Results can only be integrated into other applications with a lot of effort. 

In 2011 these prejudices are wrong and outdated. SAS has fundamentally changed its appearance and 

its usability over time. The following subsections give a quick visual overview over the changes in the 

appearance of SAS. 

                                                           
* Corresponding author: Gerhard.Svolba@aut.sas.com 
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Figure 1: Year 1999 - SAS 8, Enterprise Guide, Output Delivery System, HTML, PDF, Java, Active X 

 

 

 

Figure 2: Year 2004 – SAS 9.1 Java Front Ends, Interactive Graphs 
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Figure 3: Year 2008 – SAS 9.2 Statistical Graphics 

 

 

 

Figure 4: Year 2011 – SAS 9.3 and JMP-Integration 
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2  The Integration of SAS and JMP 

The integration of SAS® and JMP® allows our users to benefit from the advantages of both 

areas:  

 

Figure 5: The integration of SAS and JMP 

SAS 

 Data Integration and Data Access 

 Data Preparation and Data Transformations 

 Data Quality Control 

 Batch Processing 

JMP 

 Ad-hoc Analyses 

 Interactive Point&Click Interfaces 

 Visual representation of the results 

3 Custom Designs 

With two factors, a Full Factorial design explores your opportunity space by arranging points in a 

square. But you may already know that the area you want to explore is not square, in which case using 

a classical design forces you to compromise. The Custom Designer involves no compromise and 

always makes the best use of your experimental budget. Using its computer-generated designs allows 

you to tackle a much wider range of design challenges, but all within a unified framework. You can 

include process and mixture factors within the same design, use hard- and very hard-to-change factors 

for situations in which randomization is restricted, and define specific model terms to be estimable 

only “if possible,” building supersaturated designs that can screen for a larger number of factors than 

available runs. Finally, the Custom Designer allows you to perform sample size calculations to 

determine whether your experimental investment is likely to be worthwhile. 
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Figure 6: The power of Custom Designs is that they are model-based. So in addition to the usual 

specification of factors and responses, you need to input the terms that describe the expected behavior, 

the shape of the opportunity space you want to explore and your budget 

4 Classical Designs 

Ronald Fisher first introduced four enduring principles of DOE: The factorial principle, 

randomization, replication and blocking. But until relatively recently, generating (and then analyzing) 

a design to exploit these principles relied primarily on hand calculation. Despite this burden, the 

ingenuity of practitioners over more than 80 years has led to a series of widely applied design families 

adapted to meet specific situations and experimental objectives. JMP offers all of the classical design 

types you would expect, including Full Factorial, Screening, Response Surface, Mixture and Taguchi 

Array. After defining factors and responses, JMP lets you pick an appropriate design from those listed 

and provides various design evaluation tools, such as prediction variance profiles and FDS plots, to 

assess your selection before committing any resources. Once the runs have been conducted, analysis is 

straightforward thanks to the pre-built JMP scripts that are stored in your data table during the design 

process. 
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Figure 7: JMP offers all of the classical design types you would expect, including Full Factorial, 

Screening, Response Surface, Mixture and Taguchi Array. Whether you use a Classical, Custom or 

other design, you can use the Contour Profiler to interactively probe your fitted model to see patterns 

of variation, visually assess how factors affect your responses and find viable operating regions. 

5 Other Designs 

Even when there is no intrinsic variability in the response, DOE still finds application in exploring 

highly dimensional factor spaces efficiently. To meet this situation, JMP provides Space-Filling 

designs, which are typically analyzed with the Gaussian Process smoother to make a surrogate model 

with low prediction bias and variance. JMP can also generate and analyze Choice Designs in which 

consumers or users are asked to state their preferences between alternatives, including price as a factor 

if desired. Finally, JMP provides designs for Accelerated Life Tests and Nonlinear models. And if 

needed, you can add more design families to JMP through its scripting language, JSL. 
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Figure 8: You can conduct visual analysis and optimization of a Choice Design using the 

interactive JMP Profiler 

6 Optimize and Simulate 

Although vital, design is only half of DOE. No matter which design you decide to use, JMP makes the 

subsequent analysis as easy as possible. Depending on the situation, the table containing your design 

will automatically contain the right script to analyze your results, usually via the Screening or Fit 

Model Platform. With multiple responses, you can simultaneously fit different models with Stepwise 

refinement using a chosen stopping rule. When you have built models you think are useful, The 

various Profilers in JMP allow you to interactively work with them and visually identify viable 

operating regimes and factor set points. No matter how complex your problem, The built-in Optimizer 

in JMP can perform the inevitable trade-off between responses with a single click. Once you have the 

sweet spot, you can then use the integrated Simulator to see how robust this is likely to be in practice. 
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Figure 9: The Profiler allows you to interactively probe factor space, see which factors affect the 

responses and how, and find optimum settings for one or more responses using desirability functions. 

You can also use the Simulator to assess how real-world variation will be transmitted from factors into 

responses 
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A Dynamic Programming Approach to Sensor Trajectory Design
for Parameter Estimation of Spatiotemporal Systems

Dariusz Uciński∗

Institute of Control and Computation Engineering, University of Zielona Góra,
ul. Podgórna 50, 65–246 Zielona Góra, Poland

Abstract: A systematic procedure for planning sensor movements in a specified
spatial domain in such a way as to maximize the accuracy of parameter estimation
of a given spatiotemporal system is proposed. The global design criterion is a gen-
eral local design criterion defined on the Fisher information matrix associated with
the parameters to be identified. The approach converts the problem to an optimal
control one in which the control forces of the sensors are optimized. Its solution is
obtained with the use of an iterative dynamic programming algorithm capable of
handling various constraints imposed on sensor motions. Some refinements to make
the computational procedure more efficient are discussed. A summary of numerical
performance of the resulting algorithms is given in the final part of the paper.

Keywords: D-optimum design, Moving sensors, Optimal trajectory, Dynamic pro-
gramming.

1 Introduction

The importance of measurement system design for estimation of unknown coefficients in dis-
tributed parameter systems, i.e., systems modelled by partial differential equations, has been
recognized for a long time, but relatively few attempts have been made at solving this problem.
Moreover, most of the contributions in this area deal with the choice of stationary sensors po-
sitions (for comprehensive surveys, see (Kubrusly and Malebranche, 1985; Uciński, 2005, 1999;
van de Wal and de Jager, 2001; Song et al., 2009)). On the other hand, the optimal measure-
ment problem for spatially movable sensors seems to be very attractive from the viewpoint of the
degree of optimality. This is somewhat intimidating because of the complexity of the resulting
optimization problem, but in recompense for such efforts a number of benefits are derived. This
is due to the fact that sensors are not assigned to fixed positions which are optimal only on the
average, but are capable of tracking points which provide at a given time moment best infor-
mation about the parameters to be identified. Consequently, by actively reconfiguring a sensor
system we can expect the minimal value of an adopted design criterion to be lower than the one
for the stationary case.

It is important to note that planning techniques developed for moving sensors can prove
useful in many areas of automation. A possibility of using moving observations does arise in
a variety of applications, e.g., air pollutants in the environment are often measured using data
gathered by monitoring cars moving in an urban area and atmospheric variables are measured
using instruments carried in an aircraft. What is more, technological advances in communication
systems and the growing ease in making small, low power and inexpensive mobile systems now
make it feasible to deploy a group of networked vehicles in a number of environments (Zhao and
Guibas, 2004; Chong and Kumar, 2003; Sinopoli et al., 2003; Cassandras and Li, 2005; Bullo
et al., 2009). A cooperated and scalable network of vehicles, each of them equipped with a single
sensor, has the potential to substantially improve the performance of the observation systems.
Applications in various fields of research are being developed and interesting ongoing projects

∗d.ucinski@issi.uz.zgora.pl
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include extensive experimentation based on testbeds. The problem to be discussed in this paper
cought our attention while working on one of such experimental platforms, namely the MAS-net
lab testbed being a distributed system equipped with two-wheeled differentially driven mobile
robots capable of sensing the states of DPSs described by diffusion and wave equations (Tricaud
et al., 2008; Uciński and Chen, 2005).

Surprisingly, few works have been reported regarding a systematic approach to mobile ob-
server planning and the problem still waits for satisfactory solutions. Rafajłowicz (1986) considers
the determinant of the Fisher Information Matrix (FIM) associated with the parameters to be
estimated as a measure of the identification accuracy and looks for an optimal time-dependent
measure, rather than for the trajectories themselves. On the other hand, in (Uciński, 2005,
1999, 2000; Uciński and Korbicz, 2001), apart from generalizations of Rafajłowicz’s results, some
computational algorithms based on the FIM were developed. The problem is reduced to a state-
constrained optimal-control one for which solutions are obtained via the method of successive
linearizations which is capable of handling various constraints imposed on sensor motions. In
turn, the work (Uciński and Chen, 2005) was intended as an attempt to properly formulate and
solve the time-optimal problem for moving sensors which observe the state of a DPS so as to
estimate some of its parameters. Finally, in (Uciński and Patan, 2010) computationally efficient
methods and algorithms to determine optimal trajectories of mobile sensor nodes for source
identification in distributed parameter systems we developed.

One of the most difficult problems in the sensor location problem is establishing with some
element of certainty that a global optimum has been obtained. The difficulty arises when the
equations describing the system are highly nonlinear and a large number of local optima are
present. Therefore, it is necessary to crosscheck the results, even when one is quite certain
that the global optimum has been obtained. If such cross-checking is done by a totally different
optimization procedure, then the confidence in accepting the result is increased. The main goal of
this contribution is to show how iterative dynamic programming (Luus, 2000), which constitutes
one of prospective research directions within the field of approximate dynamic programming,
may be used to solve this problem encountered while configuring mobile sensor networks.

2 Sensor location problem

Consider a DPS described by the partial differential equation

∂y

∂t
= L

(
y, θ
)

in Ω×]0, tf [ (1)

subject to given boundary and initial conditions, where Ω ⊂ R2 is a fixed, bounded, open
set with sufficiently smooth boundary ∂Ω, y = y(x, t; θ) denotes the scalar state at a spatial
point x ∈ Ω̄ = Ω ∪ ∂Ω and time instant t ∈ T = [0, tf ], tf < ∞, and L signifies a (possibly
nonlinear) differential operator which involves first- and second-order spatial derivatives and may
include terms accounting for forcing inputs which are given a priori. In this description, θ ∈ Rm
represents an unknown constant parameter vector which must be estimated using observations
of the system.

In what follows, we consider the observations provided by N moving pointwise sensors. Let
xj : T −→ Ωad be the trajectory of the j-th sensor, where Ωad ⊂ Ω stands for the region where
measurements can be made. The observations are assumed to be of the form

z(t) = ym(t) + εm(t), t ∈ T, (2)
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where

ym(t) = col[y(x1(t), t), . . . , y(xN (t), t)], (3)

εm(t) = col[ε(x1(t), t), . . . , ε(xN (t), t)], (4)

z(t) is the N -dimensional observation vector and ε = ε(x, t) is a white Gaussian noise process (a
formal time derivative of a Wiener process) whose statistics are

{
E
{
ε(x, t)

}
= 0,

E
{
ε(x, t)ε(x′, t′)

}
= σ2δ(x− x′)δ(t− t′),

(5)

σ > 0 being the standard deviation of the measurement noise and δ the Dirac delta function
concentrated at the origin. The assumption that we are in a position to observe directly the
system state is made only for simplicity of presentation. The approach outlined in what follows
can easily be generalized to indirect observation of state variables.

In the presented framework, the parameter identification problem is usually formulated as
follows: Given the model (1) and the outcomes of the measurements z along the trajectories xj ,
j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being the set of admissible parameters) which
minimizes the output least-squares fit-to-data functional given by (Banks and Kunisch, 1989;
Omatu and Seinfeld, 1989)

J (θ) =
1

2

∫ tf

0
‖z(t)− ŷm(t; θ)‖2 dt (6)

where ŷm is defined just as ym in (3), but for y replaced by ŷ = ŷ(x, t; θ), the solution to (1)
which corresponds to a given parameter θ (‖ · ‖ stands for the Euclidean norm).

We feel, intuitively, that the parameter estimate θ̂ depends on the trajectories xj since the
integrand on the right-hand side of eqn. (6) does it. This fact suggests that we may attempt
to select the sensors’ trajectories which lead to best estimates of the system parameters. To
form a basis for the comparison of different trajectories, a quantitative measure of the ‘goodness’
of particular trajectories is required. A logical approach is to choose a measure related to the
expected accuracy of the parameter estimates to be obtained from the data collected (note that
the design is to be performed off-line, before taking any measurements). Such a measure is usually
based on the concept of the Fisher Information Matrix (FIM) (Sun, 1994; Rafajłowicz, 1986)
which is widely used in optimum experimental design theory for lumped systems (Walter and
Pronzato, 1997; Fedorov and Hackl, 1997; Atkinson et al., 2007). When the time horizon is large,
the nonlinearity of the model with respect to its parameters is mild and the measurement errors
are independently distributed and have small magnitudes, the inverse of the FIM constitutes a
good approximation of the covariance matrix for the estimate of θ (Walter and Pronzato, 1997;
Fedorov and Hackl, 1997; Atkinson et al., 2007).

For notational convenience, introduce

s(t) = (x1(t), x2(t), . . . , xN (t)), ∀ t ∈ T (7)

and set n = dim(s(t)). The FIM has the following representation (Uciński, 2005; Quereshi et al.,
1980):

M(s) =

N∑

j=1

∫ tf

0
g(xj(t), t)gT(xj(t), t) dt, (8)

where g(x, t) = ∇θy(x, t; θ)
∣∣
θ=θ0

denotes the vector of the so-called sensitivity coefficients, θ0

being a prior estimate to the unknown parameter vector θ (Uciński, 2000, 2005).
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Optimal sensor trajectories can be found by choosing s so as to maximize some scalar function
Ψ of the information matrix. The introduction of the design criterion permits to cast the sensor
location problem as an optimization problem, and the criterion itself can be treated as a measure
of the information content of the observations. Several choices exist for such a function (Walter
and Pronzato, 1997; Fedorov and Hackl, 1997; Atkinson and Donev, 1992) and the most popular
are

• The D-optimality (determinant) criterion

Ψ(M) = − ln det(M). (9)

• The E-optimality criterion (smallest eigenvalue; λmax( · ) denotes the maximum eigenvalue
of its argument)

Ψ(M) = λmax(M−1). (10)

• The A-optimality (trace) criterion

Ψ(M) = tr(M−1). (11)

3 Dynamics of sensor movments

We assume that the sensors are conveyed by vehicles whose motions are described by

ṡ(t) = f(s(t), u(t)) a.e. on T , s(0) = s0 (12)

where a given function f : Rn × Rr → Rn is required to be continuously differentiable, s0 ∈ Rn
defines an initial sensor configuration, and u : T → Rr is a measurable control function which
satisfies

ul ≤ u(t) ≤ uu a.e. on T (13)

for some constant vectors ul and uu.
Given any initial sensor configuration s0 and any control function, there is a unique absolutely

continuous function s : T → Rn which satisfies (12) a.e. on T . In what follows, we will call it
the state trajectory corresponding to s0 and u, and make the following notational convention:
if s appears without mention in a formula, it is always understood that a control u and initial
condition s0 have been specified and s is the trajectory corresponding to u and s0 through (12).

4 Optimal control formulation

The goal in the optimal measurement problem is to determine the forces (controls) applied to
each vehicle conveying a sensor, which minimize the design criterion Φ[ · ] defined on the FIMs
of the form (8), which are determined unequivocally by the corresponding trajectories, subject
to the constraints (13) on the magnitude of the controls. In order to increase the degree of
optimality, in our approach we will regard s0 as a control parameter vector to be chosen in
addition to the control function u. Clearly, the correctness of such a formulation necessitates
some additional restrictions on the smoothness of sensitivity coefficients g. In what follows, we
thus assume the continuity of g and ∂g/∂x.

The above formulation can be interpreted as the following optimization problem: Find the
pair (s0, u) which minimizes

J(s0, u) = Φ[M(s)] (14)
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over the set of feasible pairs

P =
{

(s0, u) | u : T → Rr is measurable, ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩN
ad

}
. (15)

Evidently, its high non-linearity excludes any possibility of finding closed-form formulae for
its solution. Accordingly, we must resort to numerical techniques. A number of possibilities exist
in this respect (Polak, 1997; Gruver and Sachs, 1980), but before exploiting them, observe that
in spite of its apparently non-classical form, the resulting optimal-control problem can be easily
cast as a classical Mayer problem where the performance index is defined only via terminal values
of state variables.

5 Reduction to canonical form

The aim of this section is to convert our problem into a canonical optimal control one with
an endpoint cost (Polak, 1997). For notational convenience, define the function svec : Sm →
Rm(m+1)/2, where Sm denotes the subspace of all symmetric matrices in Rm×m, that takes the
lower triangular part (the elements only on the main diagonal and below) of a symmetric matrix
A and stacks them into a vector a:

a = svec(A) = col[A11, A21, . . . , Am1, A22, A32, . . . , Am2, . . . , Amm]. (16)

Similarly, let A = Smat(a) be the symmetric matrix such that svec(Smat(a)) = a for any
a ∈ Rm(m+1)/2.

Consider the matrix-valued function

Π(s(t), t) =
N∑

j=1

g(xj(t), t)gT(xj(t), t). (17)

Setting r : T → Rm(m+1)/2 as the solution of the differential equations

ṙ(t) = svec(Π(s(t), t)), r(0) = 0, (18)

we have
M(s) = Smat(r(tf )), (19)

i.e., minimization of Φ[M(s)] thus reduces to minimization of a function of the terminal value of
the solution to (18).

Introducing the augmented state vector

q(t) =

[
s(t)
r(t)

]
, (20)

we obtain

q0 = q(0) =

[
s0

0

]
. (21)

Then the equivalent canonical optimal control problem consists in finding a pair (q0, u) ∈ P̄
which minimizes the performance index

J̄(q0, u) = φ(q(tf )) (22)

subject to {
q̇(t) = ϕ(q(t), u(t), t),

q(0) = q0,
(23)
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where

P̄ =
{

(q0, u) | u : T → Rr is measurable, ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩN
ad

}
, (24)

and

ϕ(q, u, t) =

[
f(s(t), u(t))

svec(Π(s(t), t))

]
, φ(q(t)) = Φ[Smat(r(t))]. (25)

The above problem in canonical form can be solved using one of the existing packages for
numerically solving dynamic optimization problems, such as RIOTS_95 (Schwartz et al.,
1997), DIRCOL (von Stryk, 1999) or MISER (Jennings et al., 2002). The aim of the research
reported in what follows was to compare this approach with the solution based on iterative
dynamic programming which offers numerous advantages regarding flexibility and prospective
extensions towards parallel implementations.

6 Solution via iterative dynamic programming

Dynamic programming (DP) is an extremely powerful method for solving optimization problems
(Bertsekas, 2000). It has the attractive feature of breaking up a complex optimization problem
into a number of simpler problems. The solution of the simpler problems then leads to the solution
of the original problem. Such stage-by-stage calculations are ideally suited for computers, and
the global optimum is always obtained. However, for high-dimensional nonlinear optimal control
problems with continuous state and control vectors, application of DP creates the following
problems:

1. Rather fine grids for q and u are inevitable for an accurate solution.

2. When minimizing the cost-to-go function at consecutive stages, its values are needed for
state vectors which are between the state grid points. They can be computed using an
interpolation method which must be very accurate so as not to miss the global optimum.

3. Dense grids for state and control vectors entail unacceptable times of computations and
memory requirements (the ‘curse of dimensionality’).

To overcome these limitations, Luus Luus (2000) developed an algorithm termed iterative
dynamic programming (IDP). To alleviate problems with fine grids, computations are repeated
for successively reduced grid sized. At first, the problem is solved by using a coarse grid. Then
the midpoints of the state and control grids are set equal to the preliminary optimal state and
control vectors, and the ranges of the grids are reduced. The second problem can be solved by
approximating each contribution to the cost-to-go produced at a given stage by its counterpart
obtained for an element of the state grid which is closest to the current state. The latter values are
precomputed for the current grid and stored in computer memory. Finally, the third impediment
can be surmounted by using several randomly distributed grid points.

A full description of the IDP algorithm can be found in (Luus, 2000). Since it contains quite
a large number of details and heuristic improvements aimed at accelerating computations, it is
omitted here.

7 Numerical example

7.1 Sensor location problem

Consider the two-dimensional diffusion equation
∂y

∂t
= ∇ · (µ∇y) + F (26)
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for x ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous initial and Dirichlet boundary
conditions, where F (x, t) = 20 exp(−50(x1 − t)2). The assumed form of the diffusion coefficient
is

µ(x) = θ1 + θ2x1 + θ3x2. (27)

We note that the forcing term in (26) imitates the action of a line source whose support is
constantly oriented along the x2-axis and moves with constant speed from the left to the right
boundary of Ω. Given three moving sensors whose dynamics is defined by the simple model

ṡ(t) = u(t), s(t0) = s0,

along with the constraints

|ui(t)| ≤ 0.7, ∀ t ∈ T, i = 1, . . . , 6

imposed on the controls, we are interested in designing their trajectories so as to obtain estimates
of θ1, θ2 and θ3 for which the confidence ellipsoid would have the smallest volume, which boils
down to minimization of the D-optimality criterion. For simplicity, we assume that the initial
sensor positions are fixed at

s0 = (0.2, 0.1, 0.2, 0.5, 0.2, 0.8).

While numerically integrating the system of ODEs (18), the values of the vector of the
sensitivities g = col[g1, g2, g3] along sensor trajectories are indispensable. Assuming the nominal
values θ0

1 = 0.1, θ0
2 = −0.05 and θ0

3 = 0.2, they are defined as solutions to the following system
of PDEs (Uciński, 2005, 1999):





∂y

∂t
= ∇ · (µ∇y) + F,

∂g1

∂t
= ∇ · ∇y +∇ · (µ∇g1),

∂g2

∂t
= ∇ · (x1∇y) +∇ · (µ∇g2),

∂g3

∂t
= ∇ · (x2∇y) +∇ · (µ∇g3),

(28)

in which the first equation constitutes the original state equation and the second, third and
fourth equations result from its differentiation with respect to θ1, θ2 and θ3, respectively. The
initial and Dirichlet boundary conditions for all the four equations are homogeneous.

We numerically solved (28) using some routines of the Matlab PDE toolbox (COMSOL
AB, 1995) and stored g1, g2 and g3 interpolated at the nodes of a rectangular grid in a four-
dimensional array (we applied uniform partitions using 21 grid points per each spatial dimension
and 31 points in time), cf. Appendix I in (Uciński, 2005) for details. Despite the impossibility of
employing the graphical user interface of the toolbox (it is tailored to single PDEs, and not to
systems of PDEs), we could still solve (28) using command-line functions. The GUI was applied
here only to conveniently define the spatial domain Ω (which is a unit square) and then to export
the resulting decomposed geometry matrix to Matlab’s workspace. Since values of g may have
been required at points which were not necessarily nodes of that grid, the relevant interpolation
was thus performed using cubic splines in space (to this end, Matlab’s procedure interp2 was
used) and linear splines in time. Since, additionally, the derivatives of g with respect to spatial
variables and time were going to be required, these derivatives were approximated numerically
using the central-difference formula.

Our program implementing IDP was written using Matlab 7.6. All computations were per-
formed using a PC equipped with an Intel Core 2 Duo 2.50 GHz processor, 4 GB RAM, running
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Figure 1: Results of single pass IDP computations

Table 1: Single pass IDP performance

CPU time [h :min : s]

iteration time 15.8906

total time 636.4844

Windows Vista with SP2. The obtained results were compared with those produced by RI-
OTS_95, a high-performance Matlab toolbox for solving optimal control problems (Schwartz
et al., 1997).

7.2 Single-Pass IDP

Figure 1 displays optimal sensor trajectories and the values of the performance index obtained
by applying a single-pass IDP algorithm. Convergence to J̄ = −10.3075 was observed in 40
iterations (approximately 10 minutes of CPU time, cf. Tab. 1) using the following parameters,
see (Luus, 2000) for their detailed description:

• Number of time stages: 20,

• Number of test values for the control vector: 10,

• Initial region size initial region size: 0.6,

• Region contraction factor: 0.99,

• Total number of iterations per pass: 3,

• Number of q-trajectories: 1.

In the current iteration, the best results are obtained using a single q-trajectory that has
been optimal one in the previous iteration (or the initial value in the first iteration). Randomly
generated multiple q-trajectories yield only minor improvements at the cost of a substantial
increase in the time of computations (each additional q-trajectory approximately doubles the
time spent on one iteration). A similar increase in the CPU time was observed after the number
of test values for u had been increased. Moreover, even doubling this number did not significantly
improve the results, since the ultimate value of J̄ was −10.3198 (though the sensor trajectories
became slightly smoother, cf. Fig. 2).
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Figure 2: Results of single pass IDP computations: (a) the doubled number of test values for the
control vector, (b) the lack of the energy factor.
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Figure 3: Results of multi-pass IDP.

For low dimensional problems it is possible to choose control candidates from an evenly spaced
grid, e.g., by an exhaustive search. Systems that are much more complicated need a reduction
in the number of analyzed candidates for the control profile. Consequently, the only possible
way to complete calculations in a reasonable time is to use a number of control profiles that are
randomly drawn from among all admissible ones. Interestingly, for high dimensional systems,
the obtained results are as good (or even better) as those from evenly spaced grids.

The bottom panel of Fig. 1 presents the reduction of J̄(u) with successive iterations. Observe
that values close to the value of the global minimum J̄ are obtained quickly (after about 10
iterations). The rate of this convergence is strongly related to the initial region size and the
contraction factor. It is clear that when the region size is big enough, satisfactory results are
obtained faster. The energy saving factor is also included by adding to J̄ a quadratic term
penalizing excessive energy expense. As a result, the sensor trajectories become smoother.

7.3 Multi-Pass IDP

In our experiments, we also tested a multi-pass version of IDP, where, after a number of iterations,
the region sizes were reset and the procedure was repeated. However, in our case, this alteration
did not significantly improve the quality of the obtained solution. This strategy can be very useful
anyway in the case of a multimodal problem for which local optima are likely to be obtained
instead of the global one.

Optimal Design of Experiments – Theory and Application, Vienna 2011

191



Table 2: Multi-pass IDP performance

CPU time [h :min : s]

iteration time 15.9375

total time 639.4920
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Figure 4: Results of computations for A- and E-optimality criteria (top and bottom panels,
respectively).

7.4 Comparison of Optimality Criteria

Apart from the D-optimality criterion, A- and E-optimality ones were also tested. The plots of
Fig. 4 reveal that the resulting trajectories are somewhat similar. More results are presented in
Tab. 3. It can obe observed that D- and A-optimality criteria yield similar results, which is also
noticeable in Fig. 4. The difference between the values of J̄ obtained in both ways is less than
3%. The results for the E-optimality criterion are slightly different.

7.5 Comparison of IDP with RIOTS_95

The above results were verified using RIOTS_95. Figure 5 presents optimal sensors trajecto-
ries obtained using the IDP algorithm and RIOTS_95. The latter produced J̄ = −10.3952,
which confirms that the results of IDP are close to the global optimum. The sensor trajectories

Table 3: Comparison of optimality criteria

Criterion D A E

Optimal values of J̄ −10.5350 0.2186 0.1300

Values computed using D-optimal trajectories −10.5350 0.2251 0.1403

Loss inflicted by the use of D-optimal trajectories 0.00% 2.97% 7.92%

Values computed using A-optimal trajectories −10.4697 0.2186 0.1341

Loss inflicted by the use of A-optimal trajectories 0.62% 0.00% 0.05%

Values computed using E-optimal trajectories −9.9626 0.2794 0.1300

Loss inflicted by the use of E-optimal trajectories 5.43% 27.81% 0.00%
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Figure 5: D-optimal trajectories produced by IDP (top) and RIOTS_95 (bottom).
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Figure 6: Results of solving the scanning sensor location problem.

are similar to each other. Decided advantages of IDP are the possibility of dealing with nondiffer-
entiable criteria (e.g., the E-optimality one) and the flexibility regading further generalizations.
In the case of high dimensional systems, finding a global optimum by RIOTS_95 may be very
time-consuming or even impossible. Moreover, RIOTS_95 produces only local solutions.

7.6 Design for Scanning Sensors

Figure 6 presents the results produced by DP for the problem of finding optimal configura-
tions for scanning sensors. An optimal solution was obtained after approximately 3 minutes of
computations, cf. Tab. 4, using the following settings:

• a uniform 10× 10 grid of allowable sensors positions,

• the time interval divided into 30 time stages.

Analyzing the obtained results, we may notice that sensor activation policies were chosen such
that they follow the moving source. It could be also interpreted in terms of locating active sensors
in places where the sensitivity coefficients have largest values. This numerical example can be
also compared with the ‘continuous scanning’ discussed in previous sections. Summarizing, in
the final stage the sensors were placed at positions that coincide with the corresponding ends of
the trajectories produced by IDP. This constitutes another confirmation of the proposed IDP
strategy.
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Table 4: DP performance for scanning sensors

CPU time [h :min : s]

time per iteration 5.8280

total time 176.0150

8 Concluding remarks

The problem of determining sensor trajectories for the purpose of more accurate parameter
estimation for DPSs has been considered. Based on a local design criterion defined on the FIM, by
taking the sensor velocities as the control variables, an iterative dynamic programming algorithm
has been developed and applied to a simple two-dimensional diffusion equation. Extending the
presented approach, some restrictions on the motions can be also considered. For example, we
may impose the requirements that all sensors should stay within some admissible region Ωad or
that the distances between the sensors are supposed to be less than some predefined threshold.
What is more, since dynamic programming has an inherent parallel structure that makes it
especially suited for parallelization, we also going to implement it on a cluster of PCs using MPI.

Further investigations in this direction also include robustification of the design. This is
because the design of the sensor trajectories depends on the model parameters to be estimated,
so logically the optimal design can never be found at the design stage unless prior estimate θ0 is
very close to the true paremeter vector. Generally, a sequential design procedure has to be used
in which the estimated parameters are updated after some period of time and the next design is
then chosen with the aid of the improved estimates. An alternative approach is the robust-design
strategy which makes a design useful for all parameters in a given range, e.g. the design criterion

max
u

min
θ∈Θad

det(M)

requires to provide maximum information to a parameter vector Θ which is the most difficult to
be identified in an admissible range Θad. Here the ideas of approximated dynamic programming
are going to be used (Powell, 2007).
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Planning of Equivalence and Noninferiority Trials
to be Evaluated by Means of Optimal Testing Procedures
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Abstract: Optimal tests for equivalence hypotheses are comparatively complicated
to carry out in practice, due to the fact that the critical constants for the test statis-
tic must be determined from the noncentral versions of the corresponding sampling
distributions (see Wellek, 2010). In this talk it is shown that as soon as efficient
algorithms for computing the optimal critical constants have been made available,
power and sample-size calculation is less demanding for equivalence tests than for
tests of traditional one- or two-sided hypotheses, provided interest is in establishing
the null alternative of no treatment effects. For a variety of practically important
special cases, even explicit expressions for the required sample sizes can be given. Not
surprisingly, this holds only true when the distribution of the optimal test statistic
is of the continuous type. In the discrete case, testing procedures which satisfy the
usual optimality criteria, involve randomized decisions between the hypotheses on the
boundaries of the critical region which is rarely acceptable for real-world applications.
In these settings which are also discussed in some detail powerful nonrandomized tests
are required whose computation involves fairly heavy technical machinery. Exact
sample-size calculation is still possible then, but no explicit formula are available.

Keywords: Chi-squared distribution, extended hypergeometric distribution, F -dis-
tribution, noncentrality parameter, sample-size formula, t-distribution.

1 Introduction

Experiments whose proper confirmatory analysis requires application of tests for equivalence
or noninferiority, are conducted in an increasing number of areas, in particular in the medical
sciences. Roughly speaking, experiments of the kind considered in this paper are characterized
by the fact that they are run in order to establish the hypothesis that, except for practically
irrelevant differences, the effects of two (or k ≥ 2) treatments or experimental conditions are
the same. Typically, the hypothesis formulation refers to some real-valued parameter θ which
provides a sensible measure of the degree of dissimilarity of the probability distributions involved.
For example, in the specific case of a standard parallel group design used for the purpose of testing
for equivalence of two treatments A and B, an obvious choice is θ = µ1 − µ2 with µ1 and µ2
denoting a measure of location for the distribution of the endpoint variable under A and B,
respectively. The equivalence hypothesis whose compatibility with the data one wants to assess,
specifies that θ is contained in a suitable neighborhood around some reference value θ0 taken on
by θ if the distributions under comparison are exactly equal.
It will be specified as an open interval throughout with endpoints denoted by θ0−ε1 and θ0 +ε2,
respectively, where ε1 and ε2 are positive constants whose numerical values must be assigned a
priori. Specifically, in the case of the simple parallel group design with θ = µ1 − µ2, the usual
choice of θ0 is θ0 = 0, and the equivalence interval is frequently chosen symmetrical about θ0,
i.e., in the form (−ε, ε). Accordingly, the basis for planning a trial of this type is the power
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function of a valid statistical test at some prespecified level α ∈ (0, 1) of the null hypothesis

H : θ ≤ θ0 − ε1 or θ ≥ θ0 + ε2 (1.1a)

of nonequivalence, versus the equivalence assumption

K : θ0 − ε1 < θ < θ0 + ε2 (1.1b)

as the alternative hypothesis.
The inferential problems treated in the biostatistical literature under the heading of nonin-

feriority assessment share with equivalence testing problems in the strict sense a basic property:
The hypotheses formulation entails the introduction of a region in the space of the target distri-
butional parameter θ within which the difference between the actual value of θ and its reference
value θ0 is considered practically irrelevant. The feature which distinguishes noninferiority (also
called one-sided equivalence) from equivalence in the strict sense is that the region of tolerable
discrepancies between θ and θ0 is now bounded to below only whereas excesses in the value of θ
over θ0 of arbitrary magnitude are considered acceptable or even desirable. Formally speaking,
the crucial difference between equivalence testing and testing for absence of substantial inferiority
is that in the latter type of problem the right-hand boundary θ0 + ε2 of the equivalence interval
is replaced with +∞ or, in cases where the parameter space Θ of θ is bounded to the right itself,
by θ∗ = sup Θ. The corresponding hypothesis testing problem reads

H1 : θ ≤ θ0 − ε versus K1 : θ > θ0 − ε (1.2)

with sufficiently small ε > 0.
Both for equivalence and noninferiority problems, there is a fairly rich repertoire of testing

procedures which satisfy rather strong optimality criteria. The construction of these tests is
technically much more demanding than their counterparts being available for the traditional
one- or two-sided hypotheses formulation. The reason is that in the equivalence case, the critical
constants for the test statistic must generally be determined from the noncentral versions of the
corresponding sampling distributions. The objective of this talk is to show that as soon as efficient
algorithms for computing the optimal critical constants have been made available, power and
sample-size calculation is less demanding for equivalence tests than for tests of traditional one-
or two-sided hypotheses, provided interest is in establishing the null alternative of no treatment
effects. It will turn out in the subsequent sections, that for a variety of practically important
special cases, even explicit expressions for the required sample sizes can be given.

In Section 2, we start with discussing the one-sample problem with normally distributed data
of known variance. Due to its simplicity, this setting is particularly well suited for describing
the basic steps to be taken in planning an equivalence trial whose confirmatory analysis is to
be carried out by means of an UMP testing procedure. Section 3 will be devoted to problems
involving two samples from Gaussian distributions with both parameters being unknown. That
part of the exposition will cover both the paired-sample case and the case of two unrelated sam-
ples. Section 4 extends the results of Section 3 to an arbitrary number k of normal distributions
under comparison. Not surprisingly, the range of settings for which explicit sample-size formula
exist, is restricted to cases where the distribution of the optimal test statistic is of the continuous
type. In the discrete case, testing procedures which satisfy the usual optimality criteria, involve
randomized decisions between the hypotheses on the boundaries of the critical region which is
usually not acceptable for real-world applications. In these settings which will be discussed in
some detail in Section 5, powerful nonrandomized tests are required whose computation involves
fairly heavy technical machinery. Exact sample-size calculation is still possible then, but no
explicit formula are available.
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2 The one-sample problem with normally distributed data of
known variance

Suppose that the data under analysis can be described by a vector (X1, . . . , Xn) of mutually
independent random variables having all distribution N (θ, σ◦2) where σ◦2 > 0 denotes a fixed
positive constant. It is easy to verify that it entails no loss of generality if we set σ◦2 = 1,
θ0 − ε1 = −ε and θ0 + ε2 = ε with arbitrarily fixed ε > 0. For the corresponding specific
equivalence problem, a UMP level-α test exists whose critical region is given by

{
|X̄| < n−1/2Cα;√nε

}
, (2.1)

where the critical constant Cα;√nε admits the explicit representation

Cα;
√
nε =

√
χ2
1;α(n ε2) . (2.2)

In this equation, the notation is as usual, which is to say that χ2
1;α(n ε2) stands for the α-quantile

of a χ2-distribution with df = 1 and noncentrality parameter nε2.
Given the critical constant, the rejection probability of the UMP test for equivalence under

any value of the target parameter θ is easily computed exactly to be

β(θ) = Φ
(
Cα;

√
nε −

√
nθ
)
− Φ

(
− Cα;√nε −

√
nθ
)
. (2.3)

The corresponding power curve is shown in Fig. 2.1 for a sample of size n = 100 with the
equivalence margin being specified to be ε = .25 . The form of the curve differs characteristically
from that of the power function of a traditional one- or two-sided test. From a practical point
of view, perhaps the most striking conclusion to be drawn from this picture is the following:
In contrast to tests for traditional one- or two-sided problems, equivalence tests do not admit
the possibility of increasing the power to values arbitrarily close to 100% simply by selecting
sufficiently extreme points in the parameter subspace corresponding to the alternative hypothesis
under consideration.

Figure 2.1 Power function of the UMP test for equivalence at level α = 5% for |θ| ≥ .25 vs.
|θ| < .25 based on n = 100 observations from N (θ, 1). [Bold-drawn bar on horizontal coordinate
axis ↔ equivalence interval (−ε, ε) = (−.25, .25) specified by the alternative hypothesis.]
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Sample-size planning of equivalence studies is almost exclusively done under the assumption
that the null alternative θ = 0 holds true implying that the true underlying distribution exactly
coincides with that to be expected when no treatment effect exists. Restricting Equation (2.3)
to this special case and setting the power equal to some fixed prespecified value β0 yields

β0 = 2 Φ(Cα;
√
nε)− 1 . (2.4)

Keeping all other quantities fixed, this equation is easily solved for n using a simple search
algorithm and a routine for calculating quantiles of noncentral chi-squared distributions. Of
course, (2.4) can in particular be used for studying the relationship between the necessary sample
size and the equivalence margin ε given the significance level α and the target power β0. In Fig.
2.2, this is done for the three different choices β0 = .5, β0 = .8, and β0 = .9. The (decreasing)
step-functions obtained in this way show that the necessary sample size increases dramatically
when the theoretical equivalence range is narrowed from, e.g., .5 to .25, with both choices being
fairly frequently made in practice.
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Figure 2.2 Dependence of the minimum sample size required in the UMP test at level α = 5% on
the equivalence margin ε, for three different values of the target power β0.

Let us now direct attention to the version of the noninferiority problem (1.2) encountered
when the data set under analysis consists of a single sample from N (θ, σ◦2) with known variance
σ◦2 > 0. Obviously, the UMP level-α test of H1 : θ ≤ −ε versus K1 : θ > −ε rejects if it turns out
that X̄ > σ◦u1−α/

√
n−ε . The power of this test against an arbitrarily chosen alternative θ > −ε

can easiliy be computed by evaluating the expression on the right-hand side of the equation

β1(θ) = 1− Φ
(
u1−α −

√
n(ε+ θ)/σ◦

)
(2.5) .

Except for allowing σ◦ to be an arbitrarily fixed positive real number, this is the direct nonin-
feriority analogue of (2.3). It can be used to construct curves allowing one to read for varying
values of the noninferiority margin ε and given target power β0 the sample size required in the

Optimal Design of Experiments – Theory and Application, Vienna 2011

200



test for one-sided equivalence at the same level as before (i.e., α = 5%) and with θ = 0 as the
specific alternative of interest. The graphs obtained in this way are shown in Fig. 2.3. They
hold for σ◦ = 1 and the same values of β0 that are covered by the preceding figure. Comparing
the two sets of curves enables one to assess the price which has to be paid for establishing with
the same degree of certainty in terms of both error risks a hypothesis which is considerably more
precise than that stated in the noninferiority problem as the alternative: Given the values of
all other quantities involved, the power attainable with the same sample size in the two-sided
equivalence testing scenario is substantially lower as compared with the test for noninferiority.
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Figure 2.3 Analogue to Fig. 2.2 for the noninferiority case.

3 Two-sample problems involving normal distributions
with both parameters being unknown

3.1 Planning of studies to be analyzed by means of the paired
t-test for equivalence

In the paired-data setting, the primary observations (X1, Y1), . . . , (Xn, Yn) are customarily re-
duced to intraindividual differences Di = Xi − Yi, i = 1, . . . , n . Assuming for the moment
only that the marginal distributions of the Xi and the Yi obtained under two different treat-
ments A and B, say, are continuous and that the same holds true for the distribution of the
Di, a reasonable criterion of equivalence can be based on the deviation of the sign-probability
p+ ≡ P [Di > 0 ] from 1/2 , requiring that there holds 1/2 − ε1 < p+ < 1/2 + ε2 for sufficiently
small ε1, ε2 . Upon introducing the parametric model assumption

Di ∼ N (δ, σD
2) ∀ i = 1, . . . , n , (3.1)

this hypothesis is easily shown to be equivalent to the the statement Φ−1(1/2 − ε1) < δ/σD <
Φ−1(1/2 + ε2). Setting for brevity Φ−1(1/2 − ε1) = θ1, Φ−1(1/2 + ε2) = θ2, the equivalence
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testing problem of interest in the paired t-test setting can thus be written

H : δ/σD ≤ θ1 ∨ δ/σD ≥ θ2 vs. K : θ1 < δ/σD < θ2 . (3.2)

Evidently, this problem remains invariant under all transformations of the sample space IRn

of (D1, . . . , Dn) taking the form of (d1, . . . , dn) 7→ (cd1, . . . , cdn), with arbitrary c > 0. The class
of all invariant level-α tests can be shown (for details see Wellek, 2010, § 5.3) to contain a UMP
element. This UMPI test is given by the critical region

{
C̃1
α;n−1(θ1, θ2) < T < C̃2

α;n−1(θ1, θ2)
}
, (3.3)

where T denotes the usual one-sample t-statistic computed from the within-pair differences. The
optimal critical bounds C̃να;n−1(θ1, θ2) to T are uniquely determined by the equations

Gθ̃1(C2)−Gθ̃1(C1) = α = Gθ̃2(C2)−Gθ̃2(C1) , −∞ < C1 < C2 <∞ , (3.4)

with

Gθ̃ν (·) ≡ cdf of noncentral t with df = n− 1

and noncentrality parameter θ̃ν =
√
nθν for ν = 1, 2 . (3.5)

In the majority of practical applications, the equivalence interval specified under the alterna-
tive hypothesis is chosen symmetrical setting θ1 = −ε, θ2 = ε for some ε > 0 . In the symmetric
case, the expression for the rejection region of the UMPI test can be simplified to

{
|T | < C̃α;n−1(ε)

}
(3.6)

where the critical upper bound to which |T | has to be compared admits the explicit representation

C̃α;n−1(ε) =
[
F1,n−1;α(ε̃2)

]1/2
, (3.7)

with

F1,n−1; ·(ε̃2) ≡ quantile function of a F -distribution with 1, n− 1 degress
of freedom and noncentrality parameter ε̃2 = nε2 .

Calling (3.7) an explicit formula is justified by the fact that contemporary statistical software
packages provide routines for computing with very high numerical accuracy specific quantiles
of F -distributions with arbitrary numbers of degrees of freedom and values of the noncentrality
parameter.

Given the values of both critical constants, the power of the UMPI test (3.3) against any
specific alternative (δ, σ2D) can easily be computed exactly. As in the classical one- or two-sided
version of the test, it depends on the pair of parameters only through δ/σD. More precisely
speaking, we can write

β(δ, σ2D) = G√nδ/σD
(
C̃2
α;n−1(θ1, θ2)

)
−G√nδ/σD

(
C̃1
α;n−1(θ1, θ2)

)
, (3.8)

where G√nδ/σD(·) has the same meaning as in (3.5). When the equivalence margins are chosen
symmetrically and interest focusses on the power β0 against the null alternative δ = 0, this
equation reduces to the formula

β0 = 2G0(C̃α;n−1(ε))− 1 , (3.9)
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which involves only the ordinary central t-distribution function. Keeping α and ε fixed, the
expression on the right-hand side converges to that of (2.4) as n → ∞ . Combining (3.9) with
(3.7) and denoting for any 0 < q < 1 the qth quantile of central t with ν ∈ IN degrees of freedom
by tν;q gives the following formula for the minimum sample size n0, say, required for attaining
power β0 against δ = 0 in the UMPI level-α test (3.6):

n0 = min
{
n ∈ IN |n ≥ 2, F1,n−1;α(nε2) ≥ t2n−1; (1+β0)/2

}
. (3.10)

The algorithm required for determining this minimum is extremely simple, due to the fact that
the function n 7→ F1,n−1;α(nε2) increases to +∞, whereas t2n−1; (1+β0)/2 decrease to u2(1+β0)/2 as
n→∞. Table 3.1 shows the sample sizes obtained from (3.10) for the usual significance level of
5% and a selection of values of β0 and ε.

Table 3.1 Sample sizes required for attaining
power β0 ∈ {.50, .75, .90, .95, .99} against the
null alternative in the paired t-test for equiva-
lence at level 5% in the symmetric case ( θ1, θ2)
= (−ε, ε), for ε ∈ {.10, .15, .20, .25, .50} .

ε =
β0 .10 .15 .20 .25 .50

0.50 532 237 134 86 22
0.75 782 348 196 126 32
0.90 1084 483 272 175 45
0.95 1302 580 327 210 54
0.99 1785 796 449 289 75

The modifications required for adapting the above results to the case that interest is in testing
for one-sided equivalence of two Gaussian distributions in the presence of correlated samples, are
largely straightforward. The non-inferiority version of the testing problem (3.2) reads

H1 : δ/σD ≤ −ε versus K1 : δ/σD ≥ −ε . (3.11)

The same kind of argument which leads to using the critical region (3.3) for testing for two-sided
equivalence with respect to δ/σD shows that in order to perform a UMPI level-α test for (3.11),
we have to reject the null hypothesis H1 if and only if it turns out that

T > tn−1;1−α
(
−√nε

)
. (3.12)

According to this critical inequality, the standard paired-sample t-statistic has to be compared
with the (1 − α)-quantile of a noncentral t-distribution with n − 1 degrees of freedom and
noncentrality parameter −√nε. Computation of these quantiles is as easy as of the noncentral
F -quantiles to be used in the equivalence version of the test with symmetric choice of the margins.
Denoting the rejection probability of the UMPI level-α test (3.12) under an arbitrary parameter
constellation by β1(δ, σ2D), we can write

β1(δ, σ
2
D) = 1−G√nδ/σD

(
tn−1;1−α(−√nε)

)
. (3.13)

[For the definition of G√nδ/σD(·), recall Eq. (3.5).] In particular, the power against the null
alternative θ = 0 ⇔ δ = 0 is simply obtained by evaluating the central t-distribution function
t 7→ G0(t) at t = −tn−1;1−α(−√nε) .
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Exploiting these relationships, it is easy to compute the entries in Table 3.2 showing the
minimum sample-sizes which are required in the paired t-test for noninferiority under the same
set of constellations as were considered in Table 3.1.

Table 3.2 Sample sizes required for attaining
power β0 ∈ {.50, .75, .90, .95, .99} against the
null alternative in the paired t-test for noninfe-
riority at level 5% for the equivalence margin ε
ranging over {.10, .15, .20, .25, .50} .

ε =
β0 .10 .15 .20 .25 .50

0.50 271 121 68 44 11
0.75 539 240 135 87 22
0.90 858 382 215 138 36
0.95 1084 483 272 175 45
0.99 1580 704 397 256 66

Elementwise comparison of the two tables clearly shows that there are marked differences
between the one- and the two-sided versions of the paired t-test for equivalence: Under the same
choice of the left-hand endpoint of the equivalence range specified by the alternative hypothesis,
the noninferiority test provides (uniformly in n) a considerably higher chance to decide in favor
of the null alternative as compared with the test for equivalence in the two-sided sense. This
statement holds true despite the fact, that the lower critical bound to the t-statistic turns out
to be always larger or equal in the noninferiority setting. The impact of this difference between
the left-hand boundaries of the rejection regions is far overcompensated by the nonexistence of
a right-hand boundary in the noninferiority case.

3.2 Two-arm trials following the parallel-group design with normally dis-
tributed data

If the trial run in order to compare the two treatments A and B follows an ordinary two-
arm design, the data set to be analyzed consists of m + n mutually independent observations
X1, . . . , Xm, Y1, . . . , Yn. The standard parametric model used for assessing the treatment effects
observed in such a trial assumes that there holds

Xi ∼ N (ξ, σ2) ∀ i = 1, . . . ,m , Yj ∼ N (η, σ2) ∀ j = 1, . . . , n , (3.14)

with ξ, η ∈ IR, σ2 ∈ IR+ .
As in the paired-sample setting, it can be argued (cf. Wellek, 2010, § 1.6) that the most

natural measure of dissimilarity of two Gaussian distributions is the standardized difference of
their means. Accordingly, we define equivalence of treatments A and B through the condition
that the true value of this measure falls into a sufficiently narrow interval (−ε1, ε2) around zero.
In other words, we formulate the testing problem as

H : (ξ − η)/σ ≤ −ε1 or (ξ − η)/σ ≥ ε2
versus K : −ε1 < (ξ − η)/σ < ε2 (ε1, ε2 > 0) , (3.15)

in direct analogy to (3.2).
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The construction of an optimal solution to this testing problem can be carried out along
essentially the same line as leads to the paired t-test for equivalence. In the unpaired case,
both hypotheses remain invariant under transformations of the form (x1, . . . , xm, y1, . . . , yn) 7→
(a + bx1, . . . , a + bxm, a + by1, . . . , a + byn) with (a, b) ∈ IR × IR+, applying to each coordinate
of a point in the joint sample space IRN (with N = m + n) the same scale change and the
same translation. Among all level-α tests for (3.15) which are invariant against this group of
transformations, there is a uniformly most powerful one given by the critical region

{
C̃1
α;m,n(−ε1, ε2) < T < C̃2

α;m,n(−ε1, ε2)
}
. (3.16)

Again, the test statistic T is the same as that used in the traditional one- or two-sided t-test so
that it depends on the primary observations through

T =
√
mn(N − 2)/N (X̄ − Ȳ )/

{ m∑

i=1

(Xi − X̄)2 +
n∑

j=1

(Yj − Ȳ )2
}1/2

. (3.17)

The critical constants of the UMPI level-α (3.16) have to be determined by solving the equations

G∗−ε̃1(C2)−G∗−ε̃1(C1) = α = G∗ε̃2(C2)−G∗ε̃2(C1) , −∞ < C1 < C2 <∞ . (3.18)

In (3.18), the superscript ∗ is added to the symbol Gε̃(·) which has been previously used for
noncentral t-distribution functions, in order to make conspicuous the change in the way the
number of degrees of freedom has to be determined. Of course, in the two-sample case, the latter
must be set equal toN−2 instead of n−1. Furthermore, (−ε̃1, ε̃2) denotes the equivalence interval
specified under the alternative hypothesis of (3.15) rescaled by multiplication with

√
mn/N .

The simplified computational scheme for determining the critical bounds to the t-statistic
presented in § 3.1 for symmetrically chosen equivalence limits, has likewise its direct counterpart
in the two-sample case. Actually, whenever both equivalence margins ε1 and ε2 are set equal to
some common value ε > 0, the critical region (3.16) admits the representation

{
|T | < C̃α;m,n(ε)

}
, (3.19)

where
(
C̃α;m,n(ε)

)2
= F1,N−2;α(mnε2/N) ≡ lower 100α percentage point of an
F -distribution with 1, N − 2 degrees of freedom and
noncentrality parameter mnε2/N .

In view of (3.16) – (3.19), the modifications which are required in order to adapt the power
formula (3.8) and (3.9) to the parallel-group design, are straightforward. The unpaired-samples
analogue of Equation (3.8) reads

β(ξ, η, σ2) = G∗√
mn/N(ξ−η)/σ

(
C̃2
α;m,n(−ε1, ε2)

)

−G∗√
mn/N(ξ−η)/σ

(
C̃1
α;m,n(−ε1, ε2)

)
, (3.20)

with G∗√
mn/n(ξ−η)/σ(·) being defined as in (3.18). Under the symmetry restriction ε1 = ε2 = ε,

the expression for the power of the UMPI test against the null alternative ξ = η is

β0 = 2G∗0(C̃α;m,n(ε))− 1 , (3.21)

which involves the t-distribution function with N − 2 in its central version.
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Remark 3.1: It is interesting to note that, given the total sample size N , the equivalence margin ε
and the significance level α, the critical upper bound C̃α;m,n(ε) to which |T | has to be compared in
testing for equivalence in the symmetric case, is largest for m = n = N/2, as follows immediately
from the obvious fact that the quantiles of noncentral F -distributions are increasing in the
noncentrality parameter. Since, according to (3.21), β0 increases with C̃α;m,n(ε), this implies that
the balanced design is also optimal when interest is in testing for equivalence of two homoskedastic
normal distributions in presence of unrelated samples.

The way formula (3.21) may be used for sample-size planning of an equivalence study to
be evaluated by means of the two-sample t-statistic is directly analogous to the use of (3.9) in
the paired-samples setting: Provided, the equivalence interval specified under the alternative
hypothesis one aims to establish is of the form (−ε, ε), the minimum sample size per group
required in a balanced design for attaining power β0 against the alternative ξ = η can be
determined from

n∗0 = min
{
n ∈ IN |n ≥ 2, F1,2n−2;α

(
(n/2)ε2

)
≥ t22n−2; (1+β0)/2

}
. (3.22)

Table 3.3 shows the results obtained by means of this formula for the same values of ε and
β0 which appear in Table 3.1 in connection with the paired t-test for equivalence. The re-
sults directly reflect the fact that, except for negligible differences, for any 0 < q < 1, the q-
quantiles of two F -distributions with common numerator df and sufficiently large denominator
df’s coincide whenever both distributions have the same noncentrality parameter. The latter is

Table 3.3 Sample sizes required in a balanced
trial to be evaluated by means of the two-sample
t-test for equivalence at level 5% for attaining
power β0 ∈ {.50, .75, .90, .95, .99} against the
null alternative in the symmetric case ( θ1, θ2)
= (−ε, ε), for ε ∈ {.10, .15, .20, .25, .50} .

ε =
β0 .10 .15 .20 .25 .50

0.50 1064 473 266 171 43
0.75 1563 695 391 251 63
0.90 2166 963 542 347 88
0.95 2600 1157 651 417 105
0.99 3565 1586 893 572 145

half as large in the balanced two-arm as compared with the paired-samples setting, and the
reciprocal ratio holds at least approximately between homologous entries in Tables 3.3 and 3.1
throughout.

The modifications required in order to obtain an optimum testing procedure for the noninfe-
riority problem corresponding to (3.15) are largely analogous to those described in § 3.1 for the
case of paired observations. Replacing (3.15) with its noninferiority version yields

H1 : (ξ − η)/σ ≤ −ε vs. K1 : (ξ − η)/σ > −ε (ε > 0) , (3.23)

and essentially the same arguments allowing one to establish the UMPI property of the unpaired
t-test for two-sided equivalence show that the rejection region of an UMPI level-α test for this
problem is given by {

T > tN−2;1−α
(
−
√
mn/Nε

)}
. (3.24)
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Again [recall (3.12)], the critical lower bound has to be determined as the (1−α)-quantile of a t-
distribution with the appropriate number of degrees of freedom and the noncentrality parameter
being set equal to the suitably rescaled limit of the theoretical equivalence interval. The power
against any alternative (ξ, η, σ2) with (ξ− η)/σ = θ > −ε is obtained by evaluating the survivor
function t 7→ 1 − G∗√

mn/Nθ
(t) of a t-distribution with df = N − 2 and and nc =

√
mn/Nθ at

t = tN−2;1−α
(
−
√
mn/Nε

)
. Thus, the parallel-group analogue of formula (3.13) is

β1(ξ, η, σ
2) = 1−G∗√

mn/Nθ

(
tN−2;1−α

(
−
√
mn/Nε)

)
. (3.25)

If the alternative of interest specifies ξ = η, the right-hand side of Equation (3.25) can be
written G∗0

(
− tN−2;1−α

(
−
√
mn/Nε

))
. For designing a balanced two-arm trial to be evaluated

by means of the t-test for noninferiority, this yields the sample size formula

n∗0 = min
{
n ∈ IN |n ≥ 2, t2n−2; 1−α

(
−
√

(n/2)ε
)
≤ t2n−2; 1−β0

}
. (3.26)

Its use is illustrated in Table 3.4 which refers to exactly the same combinations of values of the
target power β0 and the equivalence margin ε which are covered by the preceding table. Com-
paring these results with the entries in Table 3.2 leads to same qualitative conclusion as stated
above for testing for equivalence in the strict, two-sided sense: Keeping fixed all other constants
involved in sample-size planning, the number of observational units required in each group of a
two-arm trial is about twice as large as the number of pairs which have to be available when the
paired t-test for noninferiority is the confirmatory inferential procedure of choice.

Table 3.4 Sample sizes required in a balanced
trial to be evaluated by means of the two-sample
t-test for noninferiority at level 5% for attain-
ing power β0 ∈ {.50, .75, .90, .95, .99} against the
null alternative, for ε ∈ {.10, .15, .20, .25, .50} .

ε =
β0 .10 .15 .20 .25 .50

0.50 542 241 136 87 22
0.75 1076 479 270 173 44
0.90 1714 762 429 275 69
0.95 2166 963 542 347 88
0.99 3156 1404 790 507 128

Remark 3.2: It is tempting to conclude from the relation n∗0 ≈ 2n0 with n∗0 and n0 denoting
the sample size required for the unpaired and the paired t-test for equivalence, respectively, that
the paired-data design has superior efficiency. Interpreting the results presented in this section
in that way would be grossly misleading, due to the fact that the equivalence hypothesis tested
in the paired-data setting depends on the correlation within pairs and is not the same as that
for which the unpaired test is tailored. Actually, assuming homoskedasticity in both designs,
there holds δ/σD = (δ/σ)

/√
2(1− %) so that the equivalence margin which must be specified

in the paired-data setting in order to obtain the same bound to the distance of δ/σ from the
origin is ε

/√
2(1− %) instead of ε. For % = 0, commensurable specifications are ε/

√
2 and ε, and
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recalculating the entries in Tables 3.1 and 3.2 with the former specification gives approximately
the same values as shown in Table 3.3 and 3.4, respectively. For large positive correlations, the
equivalence condition set under the alternative hypothesis of the paired t-test admits much larger
deviations of δ/σ from 0 than are compatible with the equivalence hypothesis formulated in the
unpaired case. It is clear, that relaxing the equivalence criterion increases the power to decide
in favor of the corresponding hypothesis.

4 Equivalence studies involving an arbitrary number k ≥ 2 of
normal distributions

The paired t-test for equivalence as discussed in the first part of § 3.1 can be generalized in a
natural manner to the problem of comparing an arbitrary number k ≥ 2 of normal distributions
from which mutually dependent samples are available. This problem arises whenever an experi-
menter has to deal with k different conditions [treatments, timepoints at which some quantity is
repeatedly measured, etc.] under which the observations are taken from each subject in a sam-
ple of size n, such that the marginal distributions of the corresponding k-dimensional random
vectors are all of Gaussian form. We keep leaving the intraindividual correlations completely
unspecified and start from the assumption that the data set consists of n mutually independent
vectors (X11, . . . , Xk1), . . ., (X1n, . . . , Xkn) such that

(X1i, . . . , Xki) ∼ N
(
(µ1, . . . , µk), Σ

)
, ∀ i = 1, . . . , n , (4.1)

where

Σ ≡




σ21 σ12 . . . σ1k
σ21 σ22 . . . σ2k
...

...
. . .

...
σk1 σk2 . . . σ2k


 (4.2)

denotes an unknown positive definite (symmetric) matrix of order k × k .
As a multivariate analogue of the distance measure δ2/σ2D = (µ1 − µ2)2/ (σ21 + σ22 − 2σ12)

underlying the paired t-test with symmetric specification of the hypothetical equivalence range,
we use the Mahalanobis distance of a set of k−1 contrasts (δ1, . . . , δk−1) in the µ’s from the origin
as the parametric function of interest. Of course, the covariance matrix ΣD, say, with respect to
which this distance has to be taken, is that of the corresponding contrasts in the components of
the random vectors primarily observed. For definiteness, we choose these contrasts as pairwise
differences between successive components of the respective vectors, defining

δj = µj+1 − µj , j = 1, . . . , k − 1 . (4.3)

Then, the entries in ΣD, say σDjl , are given by

σDjl = σjl + σj+1,l+1 − σj,l+1 − σj+1,l , 1 ≤ j, l ≤ k − 1 . (4.4)

The equivalence hypothesis we want to establish specifies that the true vector δ = (δ1, . . . , δk−1)
of mean differences between “adjacent” components of the X1, . . . ,Xn is sufficiently close to 0,
with distances between pairs (d1,d2) of points in IRk−1 measured in terms of (d1−d2)Σ

−1
D (d1−

d2)
′ . Accordingly, the equivalence testing problem we are now interested in reads

H : δΣ−1D δ
′ ≥ ε2 versus K : δΣ−1D δ

′ < ε2 . (4.5)
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The first step of constructing an optimal test for the equivalence problem (4.5) consists of
estimating the theoretical Mahalanobis distance through replacing δ and ΣD with

D̄ ≡ n−1
n∑

i=1

(D1i, . . . , Dk−1,i) (4.6)

and

SD ≡ (n− 1)−1
n∑

i=1

(D1i − D̄1, . . . , Dk−1,i − D̄k−1)
′

(D1i − D̄1, . . . , Dk−1,i − D̄k−1) , (4.7)

respectively. As is well-known from the classical theory of parametric multivariate inference (see,
e.g., Anderson, 1984, § 5.4) the distribution of the rescaled estimated Mahalanobis distance

T 2 ≡ nD̄S−1D D̄
′

(4.8)

depends on δ and ΣD only through the actual value, say τ2, of δΣ−1D δ
′. In fact, we can write

T 2 (n− k + 1)/
(
(n− 1)(k − 1)

) d
= Fk−1,n−k+1(nτ

2) , (4.9)

where Fν1,ν2(ψ2) stands for a random variable following an F -distribution with ν1, ν2 degrees of
freedom and noncentrality-parameter ψ2. Consequently, an exact level-α test for (4.5) consists
of checking the observed data for inclusion in the critical region

{
T 2 <

(
(n− 1)(k − 1)/(n− k + 1)

)
Fk−1,n−k+1;α(nε2)

}
. (4.10)

The test given by this critical region can be shown (cf. Wellek, 2010, § 8.1.1) to be UMPI among
all level-α tests which remain invariant under arbitrary one-to-one linear transformations of the
vector Di of contrasts.

The power function of the T 2-test for equivalence of k normal distributions to be assessed on
the basis of dependent samples can be evaluated exactly by means of easily accessible computa-
tional tools. Denoting its rejection probability under any parameter configuration (δ , ΣD) with
δΣ−1D δ

′ = τ2 ∈ [0,∞) by β(τ2), one can write

β(τ2) = P
[
Fk−1,n−k+1(nτ

2) ≤ Fk−1,n−k+1;α(nε2)
]
. (4.11)

The power against the null alternative τ2 = 0 specifying that all k population means coincide,
is given by F0

(
Fk−1,n−k+1;α(nε2)

)
where F0( · ) is a short-hand notation for the distribution

function of Fk−1,n−k+1(0). Denoting for arbitrary 0 < q < 1 the qth quantile of the latter by
Fk−1,n−k+1; q, we obtain as a sample-size formula to be used in connection with the equivalence
test (4.10)

n0 = min
{
n ∈ IN |n ≥ k, Fk−1,n−k+1;α(nε2) ≥ Fk−1,n−k+1;β0

}
. (4.12)

Of course, for given significance level and target power, n0 is both a function of the number k
of treatments under comparison, and the equivalence margin set to the theoretical Mahalanobis
distance of the vector of pairwise population means from the origin. Table 4.1 shows the sample
sizes calculated by means of (4.12) for a target power of 80%, the same choice of values of ε as
appears in Table 3.1 and k ranging over {3, . . . , 8}. In accordance with intuition, the entries in
the table are increasing within each row. It is worth noticing that the T 2-test for equivalence
of k normal distributions from which dependent samples are available, does not depend on the
specific contrast between the µj used for assessing the degree of disparity of the distributions
under comparison.
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Table 4.1 Sample sizes required for attaining power β0 =
.80 against the null alternative µ1 = . . . = µk in the T 2-
test for equivalence of k normal distributions in presence of
dependent samples, for α = .05, ε ∈ {.10, .15, .20, .25, .50}
and k = 3, . . . , 8 .

k =
ε 3 4 5 6 7 8

0.10 1044 1176 1283 1375 1458 1533
0.15 465 524 572 614 651 684
0.20 262 296 323 347 368 387
0.25 169 191 208 224 237 250
0.50 44 50 55 59 63 67

A similar extension to testing for equivalence of an arbitrary number k of normal distributions
is possible when the samples taken from each distribution are mutually independent. In order to
keep within the same frame of reference as in considering the problems concerning k = 2 samples
of normally distributed data, we assume that all distributions have a common (yet unknown)
variance σ2 ∈ IR+. Thus we suppose that the pooled data set to be analyzed exhibits the
following structure:

X11, . . . , X1n1 ← 1st sample, from N (µ1, σ
2)

X21, . . . , X2n2 ← 2nd sample, from N (µ2, σ
2)

. . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . .
Xk1, . . . , Xknk ← kth sample, from N (µk, σ

2)

In the balanced case n1 = . . . = nk = n, a natural measure of the degree to which the true
underlying distributions deviate from the “ideal” of perfect pairwise coincidence is given by the
squared Euclidean distance of the vector (µ1/σ, . . . , µk/σ) from the point (µ̄·/σ) 1k, where µ̄·
and 1k denotes the ordinary arithmetic mean of the µi and the k-vector of ones, respectively. A
useful way of extending the definition of this measure to arbitrarily unbalanced designs of the
same kind consists of replacing µ̄· with the sample-size–weighted mean µ̃·, say, of the expected
values, and the unit weight to the squared distance in the ith component with (ni/n̄). The
resulting generalized squared Euclidean distance is then given by

ψ2 =
k∑

i=1

(ni/n̄)(µi − µ̃·)2/σ2 , (4.13)

with

µ̃· =
k∑

i=1

niµi/
k∑

i=1

ni , n̄ =
k∑

i=1

ni/k . (4.14)

Using ψ2 as our target parameter leads to the problem of testing

H : ψ2 ≥ ε2 versus K : ψ2 < ε2 (4.15)

with suitably fixed ε > 0. By analogy with the construction of a test for equivalence of k normal
distributions in presence of dependent samples, it is natural to replace all basic parameters by
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their standard UMVU estimators and use the resulting plug-in estimator

ψ̂2 =

k∑

i=1

(ni/n̄)(X̄i − X̄..)
2

(N − k)−1
k∑

i=1

ni∑

ν=1

(Xiν − X̄i)
2

(4.16)

of ψ2 as the test statistic. Except for dropping the constant factor n̄/(k−1), this is the usual F -
statistic for the one-way fixed-effects ANOVA. Hence, the distribution of (n̄/(k− 1))ψ̂2 depends
on the µi and σ2 only through ψ2 and is noncentral F with k − 1, N − k degrees of freedom
(where, as before, N stands for the total sample size

∑k
i=1 ni) and noncentrality parameter n̄ψ2.

Accordingly, {
ψ̂2 < ((k − 1)/n̄)Fk−1,N−k;α(n̄ε2)

}
(4.17)

is the critical region of an exact level-α test for the problem (4.15). In the literature (cf. Wellek,
2010, § 7.2), the term multisample F -test for equivalence has been proposed for this testing
procedure. Both the hypotheses and the critical region (4.17) are invariant under a large group of
affine transformations which contains in particular arbitrary common rescalings and translations
of all observations in the pooled sample. Moreover, the F -test for equivalence can be shown to
be UMP among all tests remaining invariant under that group. Its rejection probability under
any

(
(µ1, . . . , µk), σ

2
)
satisfying Equation (4.13) for some ψ2 can be computed exactly from

β(ψ2) = P [Fk−1,N−k(n̄ψ2) < Fk−1,N−k;α(n̄ε2) ] (4.18)

where Fk−1,N−k(ψ̃2) denotes a random variable which has an F -distribution with k − 1, N − k
degrees of freedom and noncentrality parameter ψ̃2.

In the balanced case, (4.18) can be converted into a sample-size formula in a similar way as
was done above in connection with testing for equivalence with dependent samples from normal
distributions. The resulting analogue of (4.12) for the ANOVA design reads

n0 = min
{
n ∈ IN |n ≥ k, Fk−1,(n−1)k;α(nε2) ≥ Fk−1,(n−1)k;β0

}
. (4.19)

Using it for designing an equivalence trial following a one-way ANOVA layout with the same
range for the number k of treatments and specifications of the equivalence margin covered by
the previous table, leads to the results shown in Table 4.2. This time, in terms of the nominal
values obtained for n0 given the number of treatments under comparison, the significance level
and the target power, the differences between the parallel-group design and the design involving
dependent samples are small.

Remark 4.1: Except for the special case k = 2 [recall Remark 3.1], trying to identify that
allocation of a given total N of sampling units to k different treatment groups which maximizes
the power of the F -test for equivalence against the alternative ψ2 = 0, makes no real sense.
The reason behind this statement is that changing the pattern (n1, . . . , nk) of individual sample
sizes changes the shape of the neighborhood of 0 specified as the equivalence region under the
hypothesis one aims to establish. Thus, computing the power of the test with critical region
(4.17) for different allocations of some total N of units to k subgroups yields non-commensurable
quantities since they relate to tests for different pairs of hypotheses.
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Table 4.2 Sample sizes required for attaining power β0 = .80
against the null alternative µ1 = . . . = µk in the UMPI
equivalence test at level 5% for the one-way ANOVA layout,
with the number of cells ranging from 3 through 8 and the
same choices of the equivalence margin as in the previous
tables.

k =
ε 3 4 5 6 7 8

0.10 1042 1174 1281 1372 1454 1529
0.15 464 522 570 611 647 680
0.20 261 294 321 344 364 383
0.25 168 189 206 221 234 245
0.50 43 48 52 56 59 62

5 Studies with binary outcome variables

The basic complication one encounters in any setting involving discrete data is that testing pro-
cedures which satisfy the usual optimality criteria, require to take randomized decisions between
the hypotheses on the boundary of the critical region. Since decision procedures which rely on
external randomization are unsuitable for most real-world applications, sample-size planning will
have to be based on improved nonrandomized tests which are less conservative than those ob-
tained by incorporating the boundary of the optimal critical region as a whole into the acceptance
region. Although the computational issues encountered in constructing such modified nonran-
domized tests are considerable, exact sample-size calculation is still possible. We discuss this
approach for the special but practically very important case of testing for one-sided equivalence
of two binomial distributions.

To fix notation, let us assume that a two-arm trial involving two treatments A and B is
performed yielding data which are realizations of independent random variables X [↔ A] and Y
[↔ B] with X ∼ B(m, p1)] and Y ∼ B(n, p2). As to the parametrization of the corresponding
family of joint distributions of (X,Y ), we adopt the view that the odds ratio ρ = p1(1−p2)/(1−
p1)p2 provides a more adequate measure of dissimilarity of the two distributions under comparison
than the difference δ = p1 − p2 between the responder rates in the underlying populations.
Accordingly, in a noninferiority trial with binary outcome, one needs a suitable test of

H1 : ρ ≤ 1− ε versus K1 : ρ > 1− ε (5.1)

with some fixed 0 < ε < 1 .
An optimal solution to this problem can be derived by way of generalizing the construction

behind the exact test of the null hypothesis of homogeneity of B(m, p1) and B(n, p2) usually
named after R.A. Fisher (1934, § 21.02). Like the latter, the optimal [precisely: uniformly most
powerful unbiased (UMPU) — see Lehmann and Romano (2005, pp. 126–127)] test for (5.1) is
based on the conditional distribution of X given the realized value s ∈ {0, 1, . . . , N} of the total
number S = X + Y of responders [↔ first column total in a standard 2× 2 contingency table].
The conditional p-value p(x|s) of the number x of responders counted in treatment arm A has to
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be computed by means of a probability distribution which, following Harkness (1965), is usually
called extended hypergeometric distribution (cf. Johnson et al., 1992, § 6.11). In this conditional
distribution, any possible value of X is an integer x such that max {0, s− n} ≤ x ≤ min{s,m}.
For any such x the precise formula for the conditional p-value reads

p(x|s) =
m∑

j=x

(
m

j

)(
n

s− j

)
(1− ε)j

/ min{s,m}∑

j=max{0,s−n}

(
m

j

)(
n

s− j

)
(1− ε)j . (5.2)

For fixed sample sizes m,n, the power of the test based on (5.2) against an arbitrarily chosen
specific alternative (p∗1, p

∗
2) equals by definition the nonconditional rejection probability, given

the true distribution of X and Y is B(m, p∗1) and B(n, p∗2), respectively. In view of this, the first
step of an algorithm for doing exact power computations consists of determining for each possible
value s = 0, 1, . . . , N of S = X + Y , the critical value kα(s), say. Adopting the convention that,
conditional on {S = s}, the rejection region be of the form {X > kα(s)}, kα(s) is obviously
given as the smallest integer x such that max{0, s − n} ≤ x ≤ min{s,m} and p(x + 1|s) ≤ α.
Furthermore, it is essential to observe that the test holds the UMPU property only if in each
conditional distribution of X the prespecified significance level α ∈ (0, 1) is exactly attained
rather than only maintained in the sense of not exceeding it. In view of the discreteness of
all distributions involved, this typically requires that on the boundary of the critical region
{X > kα(s)}, i.e., for X = kα(s) a randomized decision in favor of the alternative hypothesis
is taken with probability γ(s) = [α − p(kα(s) + 1 | s )]/[p(kα(s) | s ) − p(kα(s) + 1 | s )] . The
conditional power of this randomized test is given by

β(p∗1, p
∗
2|s) =

min{s,m}∑

j=kα(s)+1

(
m
j

)(
n
s−j

)
ρ∗
j + γ(s)

(
m

kα(s)

)(
n

s−kα(s)

)
ρ∗
kα(s)

min{s,m}∑

j=max{0,s−n}

(
m
j

)(
n
s−j

)
ρ∗
j

, (5.3)

with ρ∗ = p∗1(1 − p∗2)/(1 − p∗1)p∗2 . In order to compute its nonconditional power against the
arbitrarily selected specific alternative (p∗1, p

∗
2), we have to integrate the function s 7→ β(p∗1, p

∗
2|s)

with respect to the distribution of S. Unfortunately, the latter is simply of binomial form
again only if (p∗1, p

∗
2) lies on the diagonal of the unit square. Whenever we select a parameter

combination with p∗1 6= p∗2, the distribution of S must be computed from scratch by means
of convolution. Computer programs for the implementation of this algorithms can be found
among the supplementary materials provided with Wellek (2010). At the same source, tools for
computing sample sizes required to achieve any given level of power in the exact UMPU test are
also provided.

In practice, optimal tests based on statistics having discrete distributions are almost ex-
clusively applied in a conservative nonrandomized version which means that the probability of
taking a decision in favor of the alternative hypothesis is set equal to zero at each point of the
boundary of the rejection region. One promising approach to reducing the loss of power en-
tailed in this modification is through replacing the target significance level α with a maximally
increased nominal level α∗ at which the nonrandomized test can be performed. As related to
testing traditional one- or two-sided hypotheses about the odds ratio %, this approach goes back
to Boschloo (1970). Notwithstanding the conceptual simplicity of the basic idea, determining the
largest admissible value of the nominal level is computationally fairly demanding. Fortunately,
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the computational burden is markedly reduced by the fact that the maximum of the rejection
probability of each test carried out through comparing the conditional p-value (5.2) with some
fixed upper bound over the null hypothesis of (5.1) is taken on at the boundary. This follows
from a result stated by Röhmel and Mannsmann (1999a) referring to Hájek and Havránek (1978)
as a primary source for a rigorous derivation. A small selection of results showing the effect of
adjusting the nominal level on the sample-size planning of a balanced two-arm noninferiority
trial with binary outcome is displayed in Table 5.1. The results admit the conclusion that the
sample size required per group in the nonrandomized test at maximally increased nominal level
typically falls distinctly left from the middle between that needed in the exact randomized test
on the one hand and its conservative nonrandomized version on the other.

Table 5.1 Sample sizes required in the exact UMPU test for
one-sided equivalence of two binomial distributions and the
conservative nonrandomized test to attain the same power
β0 as with n = 200 observations per group in the test at
maximally increased nominal level α∗. [Level of the exact
test : α = .05.]

ε α∗ p1 p2 β0 nUMPU nα

0.3333 .05974 .10 .10 .3072 179 226
0.3333 .05974 .25 .25 .5341 196 221
0.3333 .05974 .50 .50 .6368 195 219
0.5000 .05992 .10 .10 .6307 187 217
0.5000 .05992 .25 .25 .9046 198 212
0.5000 .05992 .50 .50 .9641 200 208
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